Abstract:
An integrated circuit product includes an NMOS transistor having a gate structure that includes an NMOS gate insulation layer, a first NMOS metal layer positioned on the NMOS gate insulation layer, an NMOS metal silicide material positioned above the first NMOS metal layer, and a layer of a second metal material positioned above and in contact with the NMOS gate insulation layer, the first NMOS metal layer, and the NMOS metal silicide layer. The PMOS transistor has a gate structure that includes a PMOS gate insulation layer, a first PMOS metal layer positioned on the PMOS gate insulation layer, a PMOS metal silicide material positioned above the first PMOS metal layer, and a layer of the second metal material positioned above and in contact with the PMOS gate insulation layer, the first PMOS metal layer, and the PMOS metal silicide layer.
Abstract:
Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a first fin structure overlying a first type region in a semiconductor substrate and forming a second fin structure overlying a second type region in the semiconductor substrate. A gate is formed overlying each fin structure and defines a channel region in each fin structure. The method includes masking the second type region and etching the first fin structure around the gate in the first fin structure to expose the channel region in the first fin structure. Further, the method includes doping the channel region in the first fin structure, and forming source/drain regions of the first fin structure around the channel region in the first fin structure.
Abstract:
Approaches for isolating source and drain regions in an integrated circuit (IC) device (e.g., a metal-oxide-semiconductor field-effect transistor (MOSFET)) are provided. Specifically, the device comprises a gate structure formed over a substrate, a source and drain (S/D) embedded within the substrate adjacent the gate structure, and a liner layer (e.g., silicon-carbon) between the S/D and the substrate. In one approach, the liner layer is formed atop the S/D as well. As such, the liner layer formed in the junction prevents dopant diffusion from the source/drain.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a channel region of a fin structure with a first side, a second side, an exposed first end surface and an exposed second end surface. A gate is formed overlying the first side and second side of the channel region. The method includes implanting ions into the channel region through the exposed first end surface and the exposed second end surface. Further, the method includes forming source/drain regions of the fin structure adjacent the exposed first end surface and the exposed second end surface of the channel region.
Abstract:
Interconnect structures and methods of fabricating an interconnect structure. A first interconnect and a second interconnect extend in a first direction in a interlayer dielectric layer and are spaced apart from each other. A third interconnect is arranged in the interlayer dielectric layer to connect the first interconnect with the second interconnect. The first interconnect and the second interconnect have a first width, and the third interconnect has a second width that is less than the first width.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a sacrificial gate structure above a semiconductor substrate, the sacrificial gate structure comprising a sacrificial gate insulation layer and a sacrificial gate electrode material, performing a first gate-cut etching process to thereby form an opening in the sacrificial gate electrode material and forming an internal sidewall spacer in the opening. In this example, the method also includes, after forming the internal sidewall spacer, performing a second gate-cut etching process through the opening, the second gate-cut etching process being adapted to remove the sacrificial gate electrode material, performing an oxidizing anneal process and forming an insulating material in at least the opening.
Abstract:
Methods of forming a structure for a fin-type field-effect transistor and structures for a fin-type field-effect transistor. An etch stop layer, a sacrificial layer, and a dielectric layer are arranged in a layer stack formed on a substrate. a plurality of openings are formed that extend through the layer stack to the substrate. A semiconductor material is epitaxially grown inside each of the plurality of openings from the substrate to form a plurality of fins embedded in the layer stack. The sacrificial layer is removed selective to the etch stop layer to reveal a section of each of the plurality of fins.
Abstract:
Structures for spacers in a device structure for a field-effect transistor and methods for forming spacers in a device structure for a field-effect transistor. First and second spacers are formed adjacent to a surface of a device component from respective conformal layers. The first spacer is positioned between the surface of the device component and the second spacer. The second spacer includes a plurality of first lamina and a plurality of second lamina that are arranged in an alternating sequence with the first lamina. The first spacer has a first dielectric constant, and the second spacer has a second dielectric constant that is greater than the first dielectric constant.
Abstract:
Structures for spacers in a device structure for a field-effect transistor and methods for forming spacers in a device structure for a field-effect transistor. A first spacer is located adjacent to a vertical sidewall of a gate electrode, a second spacer is located between the first spacer and the vertical sidewall of the gate electrode, and a third spacer is located between the second spacer and the vertical sidewall of the gate electrode. The first spacer has a higher dielectric constant than the second spacer. The first spacer has a higher dielectric constant than the third spacer. The third spacer has a lower dielectric constant than the second spacer.
Abstract:
A method of removing the CESL from small canyon TS structures of a MOSFET device while maintaining gate cap height and the resulting device are provided. Embodiments include providing two gates laterally separated over and perpendicular to a fin of a semiconductor device, each gate having sidewall spacers and a nitride cap; forming a conformal SiN CESL on bottom and side surfaces of a trench formed between opposing spacers between the gates; filling the trench with oxide; planarizing the spacers, nitride caps, oxide, and CESL; removing the oxide; forming a topological flat-SiN layer over the spacers, nitride caps, and CESL; removing the topological flat-SiN layer from side and bottom surfaces of the trench; removing the CESL and the topological flat-SiN layer down to a top surface of the spacers; and performing contact metallization.