Abstract:
A semiconductor device includes a first source/drain region on an upper surface of a semiconductor substrate that extends along a first direction to define a length and a second direction opposite the first direction to define a width. A channel region extends vertically in a direction perpendicular to the first and second directions from a first end contacting the first source/drain region to an opposing second end contacting a second source/drain region. A gate surrounds a channel portion of the channel region, and a first doped source/drain extension region is located between the first source/drain region and the channel portion. The first doped source/drain extension region has a thickness extending along the vertical direction. A second doped source/drain extension region is located between the second source/drain region and the channel portion. The second doped source/drain extension region has a thickness extending along the vertical direction that matches the first thickness.
Abstract:
Embodiments of the invention are directed to a method of performing fabrication operations to form a nanosheet field effect transistor (FET) device. The fabrication operations include forming a nanosheet stack over a portion of a substrate. A first source or drain (S/D) trench is formed adjacent to a first end of the nanosheet stack. A second S/D trench is formed adjacent to a second end of the nanosheet stack. A region of the substrate is removed to form a bottom dielectric isolation (BDI) cavity in the substrate, wherein the BDI cavity is positioned beneath at least the nanosheet stack, the first S/D trench, and the second S/D trench. The BDI cavity is filled with a dielectric material, thereby forming a BDI region positioned beneath at least the nanosheet stack, the first S/D trench, and the second S/D trench.
Abstract:
Embodiments of the present invention are directed to a method that prevents punch-through of a bottom isolation layer and improves the quality of the source/drain epitaxial growth in a nanosheet semiconductor structure. In a non-limiting embodiment of the invention, a bottom isolation structure is formed over a substrate. The bottom isolation structure includes a tri-layer stack in a first region of the substrate and a bi-layer stack in a second region of the substrate. A nanosheet stack is formed over the bottom isolation structure in the first region of the substrate. A gate is formed over a channel region of the nanosheet stack.
Abstract:
Embodiments of the present invention are directed to reducing the effective capacitance between active devices at the contact level. In a non-limiting embodiment of the invention, an interlayer dielectric is replaced with a low-k material without damaging a self-aligned contact (SAC) cap. A gate can be formed over a channel region of a fin. The gate can include a gate spacer and a SAC cap. Source and drain regions can be formed adjacent to the channel region. A contact is formed on the SAC cap and on surfaces of the source and drain regions. A first dielectric layer can be recessed to expose a sidewall of the contact and a sidewall of the gate spacer. A second dielectric layer can be formed on the recessed surface of the first dielectric layer. The second dielectric layer can include a dielectric material having a dielectric constant less than the first dielectric layer.
Abstract:
A technique relates to forming a self-aligning field effect transistor. A starting punch through stopper comprising a substrate having a plurality of fins patterned thereon, an n-type field effect transistor (NFET) region, a p-type field effect transistor (PFET) region, and a center region having a boundary defect at the interface of the NFET region and the PFET region is first provided. The field effect transistor is then masked to mask the NFET region and the PFET region such that the center region is exposed. A center boundary region is then formed by etching the center region to remove the boundary defect.
Abstract:
A method of forming field effect transistors (FETs), and forming integrated circuit (IC) chip including the FETs. Gates are formed on said semiconductor fins to define multi fin field effect transistors (FinFETs). Dielectric sidewalls on fins protect the sidewalls while the surface is damaged intentionally, e.g., with an implant that leaves source/drain junctions undisturbed. After removing the dielectric sidewalls semiconductor material is grown epitaxially on the sidewalls with the damage retarding growth on the surface. The epi-growth bridges between fins in the same FET. After the damage is repaired, chip processing continues normally.
Abstract:
A technique relates to forming a semiconductor device. A field-effect transistor structure having a substrate, a fin structure patterned in the substrate, a gate stack structure, and an insulator layer is first provided. A non-capacitor region and a capacitor region are then formed on the field-effect transistor structure by masking portions of the field-effect transistor structure with a mask such that a non-capacitor region is masked and a capacitor region is exposed, and etching the insulator layer to further recess the fin structure and gate stack structure within the capacitor region such that a revealed height of the fins within the capacitor region is increased relative to the revealed height of the fins in the non-capacitor region. A high-k layer can be deposited over the recessed fins and gate stack structures and a gate metal can fill the recessed portions therein.