Abstract:
To irradiate a target with a beam of energetic electrically charged particles, the beam is formed and imaged onto a target, where it generates a pattern image composed of pixels. The pattern image is moved along a path on the target over a region to be exposed, and this movement defines a number of stripes covering said region in sequential exposures and having respective widths. The number of stripes is written in at least two sweeps which each have a respective general direction, but the general direction is different for different sweeps, e.g. perpendicular to each other. Each stripe belongs to exactly one sweep and runs substantially parallel to the other stripes of the same sweep, namely, along the respective general direction. For each sweep the widths, as measured across said main direction, of the stripes of one sweep combine into a cover of the total width of the region.
Abstract:
Method for computing an exposure pattern for exposing a desired pattern on a target in a charged-particle lithography apparatus, in which a particle beam is directed to and illuminates a pattern definition device comprising an aperture array composed of a plurality of blanking apertures through which said particle beam penetrates for writing said desired pattern by exposing a multitude of pixels within an exposure area on the target, said method taking into account a spatially dependent distortion of the target within the exposure area, with respect to dislocations transversal to the direction of the particle beam.
Abstract:
An exposure pattern is computed for exposing a desired pattern on a target in a charged-particle multi-beam processing apparatus to match a reference writing tool, and/or for compensating a deviation of the imaging from a pattern definition device onto the target from a desired value of critical dimension along at least one direction in the image area on the target: The desired pattern is provided as a graphical representation suitable for the reference tool, on the image area on the target. A convolution kernel is used which describes a mapping from an element of the graphical representation to a group of pixels which is centered around a nominal position of said element. A nominal exposure pattern is calculated by convolution of the graphical representation with the convolution kernel, said nominal exposure pattern being suitable to create a nominal dose distribution on the target when exposed with the processing apparatus.
Abstract:
To irradiate a target with a beam of energetic electrically charged particles, the beam is formed and imaged onto a target, where it generates a pattern image composed of pixels. For a pattern which comprises a primary pattern region to be written with a predetermined primary feature size and a secondary pattern region which is composed of structure features capable of being written with a secondary feature size, larger than the primary feature size. The structure features of the primary pattern region are written by exposing a plurality of exposure spots on grid positions of a first exposure grid; the structure features in the secondary pattern region are written by exposing a plurality of exposure spots on grid positions of a second exposure grid according to a second arrangement which is coarser that the regular arrangement of the first exposure grid.
Abstract:
In a charged-particle multi-beam processing apparatus for exposure of a target with a plurality of parallel particle-optical columns, each column has a beam shaping device forming the shape of the illuminating beam into a desired pattern composed of a multitude of sub-beams, by means of an aperture array device, which defines the shape of a respective sub-beam by means of an array of apertures, and a deflection array device selectively deflecting sub-beams off their nominal paths; thus, only the non-selected sub-beams can reach the target. According to many embodiments of the invention each beam shaping device is provided with a first field-boundary device and a second field-boundary device, which are the first and last plate elements traversed by the beam. One of the first and second field-boundary devices defines a field-free space interval so as to accommodate feeding lines for controlling the deflection array device.
Abstract:
In a charged-particle multi-beam processing apparatus for exposure of a target with a plurality of parallel particle-optical columns, each column has a beam shaping device forming the shape of the illuminating beam into a desired pattern composed of a multitude of sub-beams, by means of an aperture array device, which defines the shape of a respective sub-beam by means of an array of apertures, and a deflection array device selectively deflecting sub-beams off their nominal paths; thus, only the non-selected sub-beams can reach the target. According to many embodiments of the invention each beam shaping device is provided with a first field-boundary device and a second field-boundary device, which are the first and last plate elements traversed by the beam. One of the first and second field-boundary devices defines a field-free space interval so as to accommodate feeding lines for controlling the deflection array device.
Abstract:
An exposure pattern is computed which is used for exposing a desired pattern on a target by means of a blanking aperture array in a particle-optical lithography apparatus which has a finite number of defects, said desired pattern being composed of a multitude of image elements within an image area on the target: A list of defective blanking apertures is provided, comprising information about the type of defect of the defective blanking apertures; from the desired pattern a nominal exposure pattern is calculated as a raster graphics over the image elements disregarding the defective blanking apertures; the “compromised” image elements (1105) are determined which are exposed by aperture images of defective blanking apertures; for each compromised element (1105), a set of neighboring image elements is selected as “correction elements” (1104); for each compromised element, corrected dose values are calculated for the correction elements, said corrected dose values minimizing an error functional of the deviation of the dose distribution including the defects from the nominal dose distribution, under the constraint that each of the corrected dose values falls within the allowed doses; and a corrected exposure pattern (1103) is generated by substituting the corrected dose values for the nominal dose values at the correction elements.