摘要:
In a method of forming gate dielectric films, a surface of a Si wafer is first cleaned in an inert gas ambient into a clean state having no naturally oxidized films. Then, after replacing the inert gas ambient with an oxidizing gas containing no nitrogen without exposing the wafer to air, the wafer is heated in the replaced ambient to form a first silicon oxide film on the silicon surface. Then, the ambient is again replaced with an oxidizing gas containing nitrogen, and the wafer is heated in the replaced ambient to form a first oxynitride film between the first silicon oxide film and the silicon. Thereafter, re-oxidation of the wafer is performed in an ambient of oxidizing gas containing no nitrogen to form a second silicon oxide film between the first oxynitride film and the silicon.
摘要:
A resistance-changing function body includes an object made of a first substance and interposed between a first electrode and a second electrode, and a plurality of particles made of a second substance and arranged within the object so that an electrical resistance between the first electrode and the second electrode is changed before and after application of a specified voltage to between the first electrode and the second electrode. The first substance makes an electrical barrier against the second substance. With this constitution, by applying a specified voltage to between the first electrode and the second electrode, the electrical resistance can be changed depending on a state of the particles made of the second substance. Also, by virtue of a simple structure, a resistance-changing function body of small size is provided with low cost.
摘要:
A resistance-changing function body includes an object made of a first substance and interposed between a first electrode and a second electrode, and a plurality of particles made of a second substance and arranged within the object so that an electrical resistance between the first electrode and the second electrode is changed before and after application of a specified voltage to between the first electrode and the second electrode. The first substance makes an electrical barrier against the second substance. With this constitution, by applying a specified voltage to between the first electrode and the second electrode, the electrical resistance can be changed depending on a state of the particles made of the second substance. Also, by virtue of a simple structure, a resistance-changing function body of small size is provided with low cost.
摘要:
A semiconductor device according to the present invention includes a semiconductor substrate; device isolation regions provided in the semiconductor substrate; a first conductivity type semiconductor layer provided between the device isolation regions; a gate insulating layer provided on an active region of the first conductivity type semiconductor layer; a gate electrode provided on the gate insulating layer; gate electrode side wall insulating layers provided on side walls of the gate electrode; and second conductivity type semiconductor layers provided adjacent to the gate electrode side wall insulating layers so as to cover a portion of the corresponding device isolation region, the second conductivity type semiconductor layers acting as a source region and/or a drain region. The gate electrode and the first conductivity type semiconductor layer are electrically connected to each other. The second conductivity type semiconductor layers are provided above the first conductivity type semiconductor layer and have a thickness which gradually increases from the device isolation region toward the gate electrode.
摘要:
A semiconductor device having a gate electrode on a Si-substrate through a gate oxide film; a first impurity diffusion region having a conductivity type reversed to a well which will form a part of source and drain regions in the two opposing sides of the gate electrode through gate electrode sidewall dielectric films; a second impurity diffusion region having the same conductivity type as the first impurity diffusion region beneath the gate electrode sidewall dielectric film, touching a channel region directly below the gate electrode and being shallower than the first impurity diffusion region; a titanium silicide film on the gate electrode and the surface of the Si-substrate of the first impurity diffusion region in the two opposing sides of the gate electrode sidewall dielectric film; and a third impurity diffusion region, formed in the first impurity diffusion region, having a higher concentration than the first impurity diffusion region and the same conductivity type as the first and second impurity diffusion region. The above semiconductor device is able to suppress the short-channel effects, and reduce the source-drain parasitic resistance and the source-drain junction leakage current while maintaining a small source-drain capacity.
摘要:
In accordance with the development of the fineness of MOSFETs, a gate insulating film and a capacitor insulating film are required to have a smaller thickness and a higher film quality. Accordingly, the present invention is intended to provide a method for forming a high-quality insulating film while preventing hydrogen atoms which cause a leak current and an electron trap from entering the insulating film. The present method uses a gas of molecules containing at least nitrogen, the gas is a compound which includes no oxygen atom and has no bond of a nitrogen atom and a hydrogen atom (N--H) and generates monoatomic nitrogen when the gas dissociates.
摘要:
A light-emitting element includes a first conductivity type semiconductor base, a plurality of first conductivity type protrusion-shaped semiconductors formed on the semiconductor base, and a second conductivity type semiconductor layer that covers the protrusion-shaped semiconductors.
摘要:
A metal line 731 is formed in a linear area S of an insulative substrate 720, and moreover a metal line 732 is formed generally parallel to the metal line 731 with a specified distance thereto. The metal line 731 is connected to an n-type semiconductor core 701 of bar-like structure light-emitting elements 710A to 710D, and the metal line 732 is connected to a p-type semiconductor layer 702. By dividing the insulative substrate 720 into a plurality of divisional substrates, a plurality of light-emitting devices in each of which a plurality of bar-like structure light-emitting elements 710 are placed on the divisional substrates are formed.
摘要:
A semiconductor memory device includes a page buffer circuit and an arrangement of memory elements each including: a gate electrode provided on a semiconductor layer with an intervening gate insulating film; a channel region provided beneath the gate electrode; a diffusion area provided on both sides of the channel region, having an opposite polarity to the channel region; and a memory functioning member provided on both sides of the gate electrodes, having a function of storing electric charge. The page buffer circuit provides a common resource shared between a memory array controller and a user. The page buffer circuit has two planes containing random access memory arrays. The page buffer circuit also includes a mode control section to facilitate access to the planes over a main bus in user mode and access to the planes by the memory array controller in memory control mode.
摘要:
A semiconductor storage device includes a field effect transistor which has a gate insulator, a gate electrode and a pair of source/drain diffusion regions on a semiconductor substrate. The device also includes a coating film made of a dielectric having a function of storing electric charge and formed on the substrate in such a manner as to cover an upper surface and side surfaces of the gate electrode. The device further includes an interlayer insulator formed on and in contact with the coating film. The device still further includes contact members which extend vertically through the interlayer insulator and the coating film on the source/drain diffusion regions and which are electrically connected to the source/drain diffusion regions, respectively. The coating film and the interlayer insulator are made of materials which are selectively etchable to each other. Thus, the issues of overerase and read failures due to the overerase can be solved, and the device reliability can be enhanced.