Abstract:
Some embodiments include a memory device and methods of forming the same. The memory device can include an electrode coupled to a memory element. The electrode can include different materials located at different portions of the electrode. The materials can create different dielectrics contacting the memory elements at different locations. Various states of the materials in the memory device can be used to represent stored information. Other embodiments are described.
Abstract:
The present invention provides a method and apparatus for forming a double-doped polysilicon floating gate in a semiconductor memory element. The method includes forming a first dielectric layer on a semiconductor substrate and forming a floating gate above the first dielectric layer, the floating gate comprised of a first layer doped with a first type of dopant material and a second layer doped with a second type of dopant material that is opposite the first type of dopant material in the first layer. The method further includes forming a second dielectric layer above the floating gate, forming a control gate above the second dielectric layer, and forming a source and a drain in the substrate.
Abstract:
A method of fabricating a memory cell including forming nanodots over a first dielectric layer and forming an intergate dielectric layer over the nanodots, where the intergate dielectric layer encases the nanodots. To form sidewalls of the memory cell, a portion of the intergate dielectric layer is removed with a dry etch, where the sidewalls include a location where a nanodot has been deposited. A spacing layer is formed over the sidewalls to cover the location where a nanodot has been deposited and the remaining portion of the intergate dielectric layer and the nanodots can be removed with an etch selective to the intergate dielectric layer.
Abstract:
A relaxed metal pitch architecture may include a bit line and a first active area string and a second active area string. The bit line may be directly coupled to the first active area string and to the second active area string. The relaxed metal pitch architecture may be applied to a non-volatile memory structure.
Abstract:
Rigid semiconductor memory using amorphous metal oxide semiconductor channels are useful in the production of thin-film transistor memory devices. Such devices include single-layer and multi-layer memory arrays of volatile or non-volatile memory cells. The memory cells can be formed to have a gate stack overlying an amorphous metal oxide semiconductor, with amorphous metal oxide semiconductor channels.
Abstract:
The present invention provides a method and apparatus for forming a double-doped polysilicon floating gate in a semiconductor memory element. The method includes forming a first dielectric layer on a semiconductor substrate and forming a floating gate above the first dielectric layer, the floating gate comprised of a first layer doped with a first type of dopant material and a second layer doped with a second type of dopant material that is opposite the first type of dopant material in the first layer. The method further includes forming a second dielectric layer above the floating gate, forming a control gate above the second dielectric layer, and forming a source and a drain in the substrate.
Abstract:
An array of memory cells configured to store at least one bit per one F2 includes substantially vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array. The structures providing the electronic memory function are configured to store more than one bit per gate. The array also includes electrical contacts to the memory cells including the substantially vertical structures. The cells can be programmed to have one of a number of charge levels trapped in the gate insulator adjacent to the first source/drain region such that the channel region has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) and such that the programmed cell operates at reduced drain source current.
Abstract:
Non-volatile memory devices and arrays are described that facilitate the use of band-gap engineered gate stacks with asymmetric tunnel barriers in floating gate memory cells in NOR or NAND memory architectures that allow for direct tunneling programming and erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The direct tunneling program and erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and leakage issues and enhancing device lifespan. Memory cells of the present invention also allow multiple bit storage in a single memory cell, and allow for programming and erase with reduced voltages. A positive voltage erase process via hole tunneling is also provided.
Abstract:
Multi-layer memory arrays and methods are provided. A memory array has two or more layers of memory material, each layer of memory material having an array of memory cells. A first contact penetrates through each layer of memory material in a first plane and is electrically connected to each layer of memory material so as to electrically interconnect the layers of memory material in the first plane. A second contact penetrates through at least one of the layers of memory material in a second plane substantially perpendicular to the first plane.
Abstract:
The invention encompasses methods of forming insulating materials between conductive elements. In one aspect, the invention includes a method of forming a material adjacent a conductive electrical component comprising: a) partially vaporizing a mass to form a matrix adjacent the conductive electrical component, the matrix having at least one void within it. In another aspect, the invention includes a method of forming a material between a pair of conductive electrical components comprising the following steps: a) forming a pair of conductive electrical components within a mass and separated by an expanse of the mass; b) forming at least one support member within the expanse of the mass, the support member not comprising a conductive interconnect; and c) vaporizing the expanse of the mass to a degree effective to form at least one void between the support member and each of the pair of conductive electrical components. In another aspect, the invention includes an insulating material adjacent a conductive electrical component, the insulating material comprising a matrix and at least one void within the matrix. In another aspect, the invention includes an insulating region between a pair of conductive electrical components comprising: a) a support member between the conductive electrical components, the support member not comprising a conductive interconnect; and b) at least one void between the support member and each of the pair of conductive electrical components.