Abstract:
Memory cells including a control gate, a charge trapping material, and a charge blocking material between the control gate and the charge trapping material. The charge blocking material is configured to allow for erasure of the memory cell by enhanced F-N tunneling of holes from the control gate to the charge trapping material.
Abstract:
Non-volatile memory devices and arrays are described that facilitate the use of band-gap engineered gate stacks with asymmetric tunnel barriers in floating gate memory cells in NOR or NAND memory architectures that allow for direct tunneling programming and erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The direct tunneling program and erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and leakage issues and enhancing device lifespan. Memory cells of the present invention also allow multiple bit storage in a single memory cell, and allow for programming and erase with reduced voltages. A positive voltage erase process via hole tunneling is also provided.
Abstract:
Memory cells including a control gate, a charge trapping material, and a charge blocking material between the control gate and the charge trapping material. The charge blocking material is configured to allow for erasure of the memory cell by enhanced F-N tunneling of holes from the control gate to the charge trapping material.
Abstract:
Non-volatile memory devices and arrays are described that facilitate the use of band-gap engineered gate stacks with asymmetric tunnel barriers in floating gate memory cells in NOR or NAND memory architectures that allow for direct tunneling programming and erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The direct tunneling program and erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and leakage issues and enhancing device lifespan. Memory cells of the present invention also allow multiple bit storage in a single memory cell, and allow for programming and erase with reduced voltages. A positive voltage erase process via hole tunneling is also provided.
Abstract:
Methods of forming non-volatile memory cell structures are described that facilitate the use of band-gap engineered gate stacks with asymmetric tunnel barriers in reverse and normal mode floating node memory cells that allow for direct tunnel programming and erase, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The low voltage direct tunneling program and erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and enhancing device lifespan. The low voltage direct tunnel program and erase capability also enables size reduction through low voltage design and further device feature scaling. Such memory cells also allow multiple bit storage. These characteristics allow such memory cells to operate within the definition of a universal memory, capable of replacing both DRAM and ROM in a system.
Abstract:
Electronic apparatus and methods of forming the electronic apparatus may include one or more insulator layers having a refractory metal and a non-refractory metal for use in a variety of electronic systems and devices. Embodiments can include electronic apparatus and methods of forming the electronic apparatus having a tantalum aluminum oxynitride film. The tantalum aluminum oxynitride film may be structured as one or more monolayers. The tantalum aluminum oxynitride film may be formed using atomic layer deposition. Metal electrodes may be disposed on a dielectric containing a tantalum aluminum oxynitride film.
Abstract:
A multi-functional and multi-level memory cell comprises a tunnel layer formed over a substrate. In one embodiment, the tunnel layer comprises two layers such as HfO2 and LaAlO3. A charge blocking layer is formed over the tunnel layer. In one embodiment, this layer is formed from HfSiON. A control gate is formed over the charge blocking layer. A discrete trapping layer is embedded in either the tunnel layer or the charge blocking layer, depending on the desired level of non-volatility. The closer the discrete trapping layer is formed to the substrate/insulator interface, the lower the non-volatility of the device. The discrete trapping layer is formed from nano-crystals having a uniform size and distribution.
Abstract:
Methods of operating dual-gate memory cells having asymmetric band-gap tunnel insulators using direct tunneling. The asymmetric band-gap tunnel insulators allow for low voltage direct tunneling programming and efficient erase with holes and/or electrons, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention.
Abstract:
Methods and devices for a dielectric are provided. One method embodiment includes forming a passivation layer on a substrate, wherein the passivation layer contains a composition of silicon, oxygen, and nitrogen. The method also includes forming a lanthanide dielectric film on the passivation layer, and forming an encapsulation layer on the lanthanide dielectric film.
Abstract:
A multi-functional and multi-level memory cell comprises a tunnel layer formed over a substrate. In one embodiment, the tunnel layer comprises two layers such as HfO2 and LaAlO3. A charge blocking layer is formed over the tunnel layer. In one embodiment, this layer is formed from HfSiON. A control gate is formed over the charge blocking layer. A discrete trapping layer is embedded in either the tunnel layer or the charge blocking layer, depending on the desired level of non-volatility. The closer the discrete trapping layer is formed to the substrate/insulator interface, the lower the non-volatility of the device. The discrete trapping layer is formed from nano-crystals having a uniform size and distribution.