摘要:
A method of manufacturing a semiconductor device has forming, in a dielectric film, a first opening and a second opening located in the first opening, forming a first metal film containing a first metal over a whole surface, etching the first metal film at a bottom of the second opening using a sputtering process and forming a second metal film containing a second metal over the whole surface, and burying a conductive material in the second opening and the first opening.
摘要:
A method of manufacturing a semiconductor device includes forming a gate electrode, a source region and a drain region, forming a first metal layer, forming silicide layers by first annealing, removing a remainder of the first metal layer after the first annealing, performing a second annealing, forming a second metal layer, performing a third annealing, and removing a remainder of the second metal layer.
摘要:
A method for manufacturing a semiconductor device includes forming a first-conductivity-type well and a second-conductivity-type well in a silicon substrate; stacking a first high-dielectric-constant insulating film and a first cap dielectric film above the silicon substrate; removing at least the first cap dielectric film from above the second-conductivity-type well; conducting a first annealing at a first temperature to cause an element included in the first cap dielectric film to diffuse into the first high-dielectric-constant insulating film disposed above the first-conductivity-type well; after the first annealing, stacking a second high-dielectric-constant insulating film and a second cap dielectric film above the silicon substrate; removing the second cap dielectric film disposed above the first-conductivity-type well; and conducting a second annealing at a second temperature lower than the first temperature to cause an element included in the second cap dielectric film to diffuse into the second high-dielectric-constant insulating film disposed above the second-conductivity-type well.
摘要:
A method of forming a gate electrode of a multi-layer structure includes a step of supplying a processing gas for poly-crystal film formation and impurities of a P-type into a film formation device, to form a poly-crystal silicon layer doped with P-type impurities, on a surface of a gate film target, a step of maintaining the processing target in the film formation device to prevent formation of an oxide film on the poly-crystal silicon layer; and a step of supplying a processing gas for tungsten silicide film formation and impurities of a P-type into the film formation device, to form a tungsten silicide layer doped with impurities of P-type impurities, on the poly-crystal silicon layer on which no oxide film is formed.
摘要:
Pre-coating films are formed in a pretreatment by supplying first film-forming gases into a process chamber of a process vessel while heating the process chamber so as to form a first pre-coating film on the inner surface of the process vessel exposed to the process chamber, followed by supplying second film-forming gases into the process chamber to form a second pre-coating film on the first pre-coating film. A semiconductor wafer is loaded into the process chamber. Then, the first gases are supplied into the process chamber while heating the process chamber so as to form a first layer on the wafer, followed by supplying the second gases into the process chamber so as to form a second layer on the first layer. A silane gas is supplied into the process chamber to permit silicon material to be deposited on the surface of the second layer stacked on the first layer. Finally, the wafer having the first and second multi-film is unloaded out of the process vessel.
摘要:
A first tungsten silicide layer relatively rich in silicon is formed on an object by using a process gas having a phosphorus atom-containing gas added thereto, and a second tungsten silicide layer relatively rich in tungsten is formed on the first tungsten silicide layer, so that a tungsten silicide film is formed. The addition amount of the phosphorus atom-containing gas to the process gas is 0.02 to 0.2% by volume “in terms of a phosphine gas”.
摘要:
A wood preservative composition which comprises a wood preservative in an amount of 0.01-10% by weight and a diphenylalkane compound represented by the general formula ##STR1## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4 and R.sup.5 are independently hydrogen or an alkyl, in an amount of not less than 1% by weight and in an amount of 1-1000 parts by weight in relation to one part by weight of the wood preservative.
摘要翻译:一种木材防腐剂组合物,其包含0.01-10重量%的木材防腐剂和由通式(* CHEMICAL STRUCTURE *)表示的二苯基烷烃化合物,其中R 1,R 2,R 3,R 4和R 5独立地是氢或烷基 ,相对于木材防腐剂的1重量份,其量为不小于1重量%,量为1-1000重量份。
摘要:
The invention provides a polyphenylene sulfide resin composition including: 1 to 100 parts by weight of an olefin elastomer (B); and 0.01 to 10 parts by weight of a carboxylic acid amide wax mixture (C), relative to 100 parts by weight of a polyphenylene sulfide resin (A), wherein the carboxylic acid amide wax mixture (C) is obtained by adding 0.01 to 5 parts by weight of an antioxidant to 100 parts by weight of a carboxylic acid amide wax produced by reaction of a higher aliphatic monocarboxylic acid, a polybasic acid and a diamine.
摘要:
A method of manufacturing a semiconductor device has forming, in a dielectric film, a first opening and a second opening located in the first opening, forming a first metal film containing a first metal over a whole surface, etching the first metal film at a bottom of the second opening using a sputtering process and forming a second metal film containing a second metal over the whole surface, and burying a conductive material in the second opening and the first opening.
摘要:
A method of manufacturing a semiconductor device has forming, in a dielectric film, a first opening and a second opening located in the first opening, forming a first metal film containing a first metal over a whole surface, etching the first metal film at a bottom of the second opening using a sputtering process and forming a second metal film containing a second metal over the whole surface, and burying a conductive material in the second opening and the first opening.