Abstract:
Fabrication methods for compressive strained-silicon by ion implantation. Ions are implanted into a silicon-containing substrate and high temperature processing converts the vicinity of the ion-contained region into strained-silicon. Transistors fabricated by the method are also provided.
Abstract:
A strained germanium field effect transistor (FET) and method of making the same, comprise forming a germanium layer on a substrate, then forming a Si protective layer on the germanium layer, next forming a gate insulation layer on the Si protective layer, and fmally positioning a gate on the gate insulation layer. The germanium layer is used as a carrier transport channel of the strained germanium FET to improve the drive current and the carrier mobility, and to increase the devices performance effectively. And because the Si protective layer is on the germanium layer, the interface property between the germanium layer and the gate insulation layer is improved.
Abstract:
A method for fabricating a semiconductor device is provided. The method mainly involves steps of forming at least one first patterned high stress layer below a silicon substrate, then forming a semiconductor device onto the substrate, and forming at least one second patterned high stress layer on the semiconductor device. According to the method, the characteristics of the PMOS and the NMOS transistors formed on the same wafer may be improved simultaneously, by utilizing the stress of the patterned layers of high stress material. Further, the mobility of the carriers is enhanced, so that the output characteristic of the transistors can be improved.
Abstract:
A method for growing strained Si layer and relaxed SiGe layer with multiple Ge quantum dots (QDs) on a substrate is disclosed. The method can reduce threading dislocation density, decrease surface roughness of the strained silicon and further shorten growth time for forming epitaxy layers than conventional method. The method includes steps of: providing a silicon substrate, forming a multiple Ge QDs layers; forming a layer of relaxed SixGe1-x; and forming a strained silicon layer in subsequence; wherein x is greater than 0 and less than 1.
Abstract:
An avalanche photo-detector (APD) is disclosed, which can reduce device capacitance, operating voltage, carrier transport time and dark current as well as increasing response speed and output power. Thus, an avalanche photo-detector (APD) with high saturation power, high gain-bandwidth product, low noise, fast response, low dark current is achieved. The APD includes an absorption layer with graded doping for converting an incident light into carriers, an undoped multiplication layer for multiplying current by means of receiving carriers, a doped field buffer layer sandwiched between the absorption layer and the multiplication layer for concentrating an electric field in the multiplication layer when a bias voltage is applied, and an undoped drift layer sandwiched between the absorption layer and the field buffer layer for capacitance reduction.
Abstract:
A process of forming a low-strain crystal layer having low cell dislocation, low surface roughness and low thickness comprises: forming at least one crystal layer on a substrate; patterning the crystal layer by exposure and development to form an ion-doping region; doping ions in the ion-doping region of the crystal layer to convert the crystal layer to an amorphous layer; performing a planarization process on the amorphous layer; and annealing the amorphous layer to convert the amorphous layer to a low-strain crystal layer.
Abstract:
The present invention discloses a method for fabricating multiple-thickness insulator layers via strain field generated by stress. The strain field is used for alternating a develop mechanism of insulator layers on the quantum dots. By forming the multiple-thickness insulator layers at various developing rates, not only leakage current is prevented, but also components are kept isolated in the nano-electronics components. In nano-electronics manufacturing, the method for fabricating multiple-thickness insulator layers results in both better product reliability and the yield rate. It is potential for integral circuit manufacturing.
Abstract:
A structure of the relaxed SiGe epitaxial layer and a fabrication method comprises a Si substrate, a Si interfacial layer positioning on the substrate, a SiGe graded buffer layer positioning on the Si interfacial layer, and a uniform SiGe epitaxy layer positioning on the SiGe graded buffer layer. It uses a mesa structure and obtains a highly relaxed SiGe epitaxial layer with a low defect density of threading dislocations, a smooth surface. A strained Si can be formed on the strained relaxation layer. The strained Si, the strained Ge, the strained Si/Ge can apply to the high-speed planar electronic devices. By using a mesa structure, it can efficiently decrease the required growth time and cost in the conventional relaxed SiGe epitaxy layer.
Abstract:
A method for growing strained Si layer and relaxed SiGe layer with multiple Ge quantum dots (QDs) on a substrate is disclosed. The method can reduce threading dislocation density, decrease surface roughness of the strained silicon and further shorten growth time for forming epitaxy layers than conventional method. The method includes steps of: providing a silicon substrate, forming a multiple Ge QDs layers; forming a layer of relaxed SixGe1-x; and forming a strained silicon layer in subsequence; wherein x is greater than 0 and less than 1.
Abstract:
A non-volatile memory is provided. The non-volatile memory comprises at least a silicon-on-insulator transistor including a substrate; an insulating layer disposed on the substrate; an active region disposed on the insulating layer; and an energy barrier device disposed in the active region and outputting a relatively small current when the non-volatile memory is read.