Abstract:
The disclosure provides a TSV substrate structure and the stacked assembly of a plurality of the substrate structures, the TSV substrate structure including: a substrate comprising a first surface, a corresponding second surface, and a TSV communicating the first surface with the second surface through the substrate; and a conductor unit completely filling the TSV, the conductor unit comprising a conductor body which has a first and a second ends corresponding to the first and second surfaces of the substrate, respectively.
Abstract:
A method of manufacturing through-silicon-via (TSV) and a TSV structure are provided. The TSV structure includes a silicon substrate, an annular capacitor, a conductive through-via, a layer of low-k material, and a bump. The annular capacitor is within the silicon substrate and constituted of a first conductive layer, a capacitor dielectric layer, and a second conductive layer from the inside to the outside. The conductive through-via is disposed in the silicon substrate surrounded by the annular capacitor, and the layer of low-k material is between the annular capacitor and the conductive through-via. The bump is in touch with the conductive through-via for bonding other chip.
Abstract:
A metal-insulator-metal (MIM) capacitor having a top electrode, a bottom electrode and a capacitor dielectric layer is provided. The top electrode is located over the bottom electrode and the capacitor dielectric layer is disposed between the top and the bottom electrode. The capacitor dielectric layer comprises several titanium oxide (TiO2) layers and at least one tetragonal structure material layer. The tetragonal structure material layer is disposed between two titanium oxide layers and each tetragonal structure material layer has the same or a different thickness. Leakage path can be cut off through the tetragonal material layer between the titanium oxide layers. In the meantime, the tetragonal structure material layer can induce the titanium oxide layers to transform into a high k rutile phase.
Abstract:
The present invention provides a semiconductor device, which includes a substrate and a sensing memory device. The substrate includes a metal-oxide-semiconductor transistor having a gate. The sensing memory device is disposed on the gate of the metal-oxide-semiconductor transistor and includes followings. The second conductive layer is covering the first conductive layer. The charge trapping layer is disposed between the first conductive layer and the second conductive layer, wherein the first conductive layer has a sensing region therein when charges stored in the charge trapping layer, and the sensing region is adjacent to the charge trapping layer. The first dielectric layer and the second dielectric layer are respectively disposed between the charge trapping layer and the first conductive layer and between the charge trapping layer and the second conductive layer, wherein a third dielectric layer is disposed between the gate and the sensing memory device.
Abstract:
Electrolyte transistor including a gate structure, two sources/drains, an electrolyte layer and a buried conductive layer is provided. The gate structure including a gate dielectric layer and a gate is located above a substrate. The two sources/drains are separated from each other and located above the substrate on each side the gate structure. The electrolyte layer is located between and contacts the two sources/drains, and located between and contacts the gate structure and the substrate. The buried conductive layer is located between the electrolyte layer and the substrate. The electrolyte layer between the two sources/drains includes a channel. The conductivity of the electrolyte layer between the two sources/drains is changed by a redox reaction, so as to turn on or turn off the channel.
Abstract:
A through-substrate via structure including a substrate, a conductive layer, and a parasitic capacitance modulation layer is provided. The substrate has at least one opening. The opening is filled with the conductive layer. The parasitic capacitance modulation layer is disposed between the conductive layer and the substrate. The parasitic capacitance modulation layer is placed around the through-substrate via to reduce the depletion capacitance and further reduce the parasitic capacitance of the through-substrate via. Therefore, during transmission of signals with high frequency, the parasitic capacitance around the through-substrate via is rather small and thereby the operation speed of devices is increased.
Abstract:
A through substrate via (TSV) structure is provided, including: a substrate; an opening formed in a portion of the semiconductor substrate; a dielectric layer formed on the sidewall of the opening; a conductive pillar formed inside the opening; and at least a portion of the dielectric layer is removed to form void. Also provided is a method for fabricating a through substrate via (TSV) structure.
Abstract:
In a manufacturing method of a semiconductor structure, a substrate having a front surface and a back surface is provided. The front surface has a device layer thereon and conductive plugs electrically connected to the device layer. A thinning process is performed on the back surface of the substrate, such that the back surface of the substrate and surfaces of the conductive plugs have a distance therebetween. Holes are formed in the substrate from the back surface to the conductive plugs, so as to form a porous film. An oxidization process is performed, such that the porous film correspondingly is reacted to form an oxide material layer. A polishing process is performed on the oxide material layer to expose the surfaces of the conductive plugs.
Abstract:
A manufacturing method of a semiconductor structure includes providing a substrate having an upper surface and a bottom surface. First openings are formed in the substrate. An oxidization process is performed to oxidize the substrate having the first openings therein to form an oxide-containing material layer, and the oxide-containing material layer has second openings therein. A conductive material is filled into the second openings to form conductive plugs. A first device layer is formed a first surface of the oxide-containing material layer, and is partially or fully electrically connected to the conductive plugs. A second device layer is formed on a second surface of the oxide-containing material layer, and is partially or fully electrically connected to the conductive plugs.
Abstract:
A manufacturing method of a semiconductor structure includes providing a substrate having an upper surface and a bottom surface. First openings are formed in the substrate. An oxidization process is performed to oxidize the substrate having the first openings therein to form an oxide-containing material layer, and the oxide-containing material layer has second openings therein. A conductive material is filled into the second openings to form conductive plugs. A first device layer is formed a first surface of the oxide-containing material layer, and is partially or fully electrically connected to the conductive plugs. A second device layer is formed on a second surface of the oxide-containing material layer, and is partially or fully electrically connected to the conductive plugs.