Abstract:
The present invention relates to microanalysers and more particularly to microanalysers making use of the secondary ion emission for producing, by means of a corpuscular optical system which combines ion optics and mass spectrography, ''''characteristic images'''' of the surface of the sample which indicate the map of distribution of its various elements or isotopes.
Abstract:
A method for confirming an ionization edge within a measured EELS spectrum involves providing a measured EELS spectrum containing an ionization edge and a numerical model that outputs simulated EELS spectra with the location of an ionization edge as an input parameter. The numerical model is fitted to the measured EELS spectrum, and a fitted location of the ionization edge is provided. A statistical test is used to confirm the ionization edge as a true ionization edge if it passes a statistical threshold value. The method can be used in a variety of applications, including materials science, chemistry, and physics, to improve the accuracy of EELS spectrum analysis.
Abstract:
A device for implanting particles in a substrate comprises a particle source and a particle accelerator for generating an ion beam of positively charged ions. The device also comprises a substrate holder and an energy filter, which is arranged between the particle accelerator and the substrate holder. The energy filter is a microstructured membrane with a predefined structural profile for setting a dopant depth profile and/or a defect depth profile produced in the substrate by the implantation. The device also comprises at least one passive braking element for the ion beam. The at least one passive braking element is arranged between the particle accelerator and the substrate holder and is spaced apart from the energy filter.
Abstract:
An apparatus, including an electrodynamic mass analysis (EDMA) assembly. The EDMA assembly may include a first upper electrode, disposed above a beam axis; and a first lower electrode, disposed below the beam axis, opposite the first upper electrode, the EDMA assembly arranged to receive a first RF voltage signal at a first frequency. The apparatus may include a deflection assembly, disposed downstream to the EDMA assembly, the deflection assembly comprising a blocker, disposed along the beam axis. The apparatus may include an energy spread reducer (ESR), disposed downstream to the deflection assembly, the energy spread reducer arranged to receive a second RF voltage signal at a second frequency, twice the first frequency. The ESR may include an upper ESR electrode, disposed above the beam axis; and a lower ESR electrode, disposed below the beam axis.
Abstract:
A method of monitoring compliance with filter specification during the implantation of ions into a substrate reading a signature of the filter and comparing the read signature with filter signatures stored in a database to identify properties of the filter including at least one of a maximum allowable temperature of the filter and a maximum allowable accumulated ion dose of the filter. The temperature and/or the accumulated ion dose of the filter is measured while ions are implanted into the substrate by an ion beam passing through the filter. The implantation is terminated when the measured temperature or accumulated ion dose of the filter reaches or exceeds the maximum allowable threshold.
Abstract:
Systems and methods of observing a sample in a multi-beam apparatus are disclosed. The multi-beam apparatus may include an electron source configured to generate a primary electron beam, a pre-current limiting aperture array comprising a plurality of apertures and configured to form a plurality of beamlets from the primary electron beam, each of the plurality of beamlets having an associated beam current, a condenser lens configured to collimate each of the plurality of beamlets, a beam-limiting unit configured to modify the associated beam current of each of the plurality of beamlets, and a sector magnet unit configured to direct each of the plurality of beamlets to form a crossover within or at least near an objective lens that is configured to focus each of the plurality of beamlets onto a surface of the sample and to form a plurality of probe spots thereon.
Abstract:
A semiconductor wafer includes a first surface and an implantation area adjacent to the first surface and a certain distance away from the first surface, the implantation area including implanted particles and defects. A defect concentration in the implantation area deviates by less than 5% from a maximum defect concentration in the implantation area.
Abstract:
A method comprising the irradiation of a wafer by an ion beam that passes through an implantation filter. The wafer is heated to a temperature of more than 200° C. The wafer is a semiconductor wafer including SiC, and the ion beam includes aluminum ions.
Abstract:
A method for preparing a biological material for implanting provides irradiating at least a portion of the surface of the material with an accelerated Neutral Beam.
Abstract:
A particle beam system includes a particle source to produce a first beam of charged particles. The particle beam system also includes a multiple beam producer to produce a plurality of partial beams from a first incident beam of charged particles. The partial beams are spaced apart spatially in a direction perpendicular to a propagation direction of the partial beams. The plurality of partial beams includes at least a first partial beam and a second partial beam. The particle beam system further includes an objective to focus incident partial beams in a first plane so that a first region, on which the first partial beam is incident in the first plane, is separated from a second region, on which a second partial beam is incident. The particle beam system also a detector system including a plurality of detection regions and a projective system.