Abstract:
A grid assembly coupled to a discharge chamber of an ion beam source is configured for steering ion beamlets emitted from the discharge chamber at circularly asymmetrically determined steering angles. The grid assembly includes at least first and a second grid with a substantially circular pattern of holes, wherein each grid comprises holes positioned adjacent to one another. A plurality of the holes of the second grid is positioned with offsets relative to corresponding holes in the first grid. Due to the offsets in the holes in the second grid, ions passing through the offset holes are electrostatically attracted towards the closest circumferential portion of the downstream offset holes. Thus, the trajectories of ions passing through the offset holes are altered. The beamlet is steered by predetermined asymmetric angles. The predetermined steering angles are dependent upon the hole offsets, voltage applied to the grids, and the distance between the grids.
Abstract:
A method and system of location specific processing on a substrate is described. The method comprises establishing a gas cluster ion beam (GCIB) according to a set of beam properties and measuring metrology data for a substrate. Thereafter, the method comprises determining at least one spatial gradient of the metrology data at one or more locations on the substrate and adjusting at least one beam property in the set of beam properties for the GCIB according to the determined at least one spatial gradient. Using the metrology data and the adjusted set of beam properties, correction data for the substrate is computed. Following the computing, the adjusted GCIB is applied to the substrate according to the correction data.
Abstract:
The charged particle beam microscope is configured of: a gas field ionization ion source (1); a focusing lens (5) which accelerates and focuses ions that have been discharged from the ion source; a movable first aperture (6) which limits the ion beam that has passed through the focusing lens; a first deflector (35) which scans or aligns the ion beam that has passed through the first aperture; a second deflector (7) which deflects the ion beam that has passed through the first aperture; a second aperture (36) which limits the ion beam that has passed through the first aperture; an objective lens (8) which focuses, on a sample, the ion beam that has passed through the first aperture; and a means for measuring the signal, which is substantially proportional to the current of the ion beam that has passed through the second aperture.
Abstract:
An electron microscope has an electron beam source generating an accelerated electron beam, electromagnetic lenses for converging the electron beam, alignment coils for adjusting the optical axis of the beam transmitted through the lenses, a control unit for controlling the ambient around a specimen, at least one vacuum pump mounted in a given location of the electron optical column, a gas inlet device mounted near the specimen, an imager for creating an image based on a signal arising from the region of the specimen illuminated with the beam, an image output device for recording and displaying the image, and a computer for controlling these components. The computer finds the orifices to be used and diameters of orifices at which the pressure is maintained without electrical discharge in an electron beam source from the selected gas species and the pressure around the specimen.
Abstract:
In an ion implantation method, ion implantation into a substrate is performed while changing a relative positional relation between an ion beam and the substrate. A first ion implantation process in which a uniform dose amount distribution is formed within the substrate and a second ion implantation process in which a non-uniform dose amount distribution is formed within the substrate are performed in a predetermined order. Moreover, a cross-sectional size of an ion beam irradiated on the substrate during the second ion implantation process is set smaller than a cross-sectional size of an ion beam irradiated on the substrate during the first ion implantation process.
Abstract:
A particle optical arrangement providing an electron microscopy system 3 and an ion beam processing system 7 comprises an objective lens 43 of the electron microscopy system having an annular electrode 59 being a component of the electron microscopy system arranged closest to a position 11 of an object to be examined. Between the annular electrode and a principal axis 9 of the ion beam processing system 7 a shielding electrode 81 is arranged.
Abstract:
A mask for exposure, which is used in a multi-column electron beam exposure apparatus having multiple column cells, includes a stencil pattern group constituted by multiple stencil patterns for each of the multiple column cells. The stencil pattern groups are arranged at intervals corresponding to arrangement intervals of the multiple column cells, and all of the stencil pattern groups are formed on a single mask substrate. The stencil pattern groups include: a first stencil pattern group formed within a deflectable range of an electron beam of each of the multiple column cells; and a second stencil pattern group having two or more of the first stencil patterns.
Abstract:
Disclosed is a shield (8, 10) disposed between an ion source (1) of an ion milling device and a sample (7) so as to be in contact with the sample. The shield is characterized by having a circular shape having an opening at the center, and by being capable of rotating about an axis (11) extending through the opening. Further, a groove is provided in the ion source-side surface of an end portion of the shield, and an inclined surface is provided on an end portion of the shield. Thus, an ion milling device having a shield, wherein the maximum number of machining operations can be increased, and the position of the shield can be accurately adjusted.
Abstract:
An emitter assembly for emitting a charged particle beam along an optical axis is described. The emitter assembly being housed in a gun chamber and includes an emitter having an emitter tip, wherein the emitter tip is positioned at a first plane perpendicular to the optical axis and wherein the emitter is configured to be biased to a first potential, an extractor having an opening, wherein the opening is positioned at a second plane perpendicular to the optical axis and wherein the extractor is configured to be biased to a second potential, wherein the second plane has a first distance from the first plane of 2.25 mm and above.
Abstract:
The invention relates to a blocking member to be placed in the diffraction plane of a TEM. It resembles the knife edge used for single sideband imaging, but blocks only electrons deflected over a small angle. As a result the Contrast Transfer Function of the TEM according to this invention will equal that of a single sideband microscope at low frequencies and that of a normal microscope for high frequencies. Preferable the highest frequency blocked by the blocking member is such that a microscope without the blocking member would show a CTF of 0.5.