摘要:
An integrated LCC-based strain gage sensor, in which at least two LCC traces or strands run across a microcavity within the cylinder head gasket. In one aspect of the present invention, a system is provided comprising a signal source and a microcavity through which an input signal from the signal source passes and which alters the input signal as a result of a response of the microcavity to a strain. An LCC connects the microcavity and the signal source and an input signal propagates through the LCC. The microcavity may comprise one or more reflective surfaces which alters the input signal as a result of a change in a dimension of the microcavity. In another aspect of the invention, the microcavity produces an output signal that has an intensity or frequency different from that of the input signal upon undergoing a deformation.
摘要:
A corrosion proof pressure transducer for measuring exhaust gas pressure includes a chip with a semiconductive diaphragm, electronics, and conductive pads thereon; with leads sonically bonded to the pads. To preclude degradation of the transducer by internal combustion engine exhaust gases, the chip may have (1) a thin glass passivation layer, (2) a vacuum deposited polymeric coating and (3) a layer of gel, thereon.
摘要:
A method for forming a sensor including the steps of providing a base wafer and forming a sensor cavity in the base wafer. The method further includes the step of coupling a diaphragm wafer to the base wafer, the diaphragm wafer including a diaphragm portion and a sacrificial portion. The diaphragm wafer is coupled to the base wafer such the diaphragm portion generally covers the sensor cavity. The method further includes the steps of reducing the thickness of the diaphragm wafer by removing the sacrificial portion, and forming or locating at least one piezo resistive portion on the diaphragm portion.
摘要:
In a pressure sensor made by bonding a sensor chip and a metal stem together with a resin adhesive, fluctuation of the sensor output caused by temperature changes are maximally reduced. The resin adhesive for bonding together the sensor element and the metal stem has a creep characteristic defined as CRnullAnullnullB between its creep rate CR and stress null upon it with A and B being constants. The resin adhesive is selected to satisfy that the constant B is not greater than 3.5.
摘要:
It is an object of the present invention to provide a portable pressure measuring apparatus to be used as an altimeter, which can be automatically switched to an optimum sampling period in accordance with a use of the apparatus before a pressure measurement at all times. A portable pressure measuring apparatus additionally comprises a pressure/altitude operation section for obtaining an altitude from a measured pressure by an arithmetic operation, a rate of pressure change operation section, and a movement detecting section, wherein, if the movement detecting section detects a movement, a pressure is measured in a sampling period, for example, in a 1-second sampling period, if a rate of altitude change is equal to or greater than a threshold or in a sampling period, for example, in a 5-second sampling period, if the rate of altitude change is smaller than the threshold and wherein, unless the movement detecting section detects any movement, the pressure sampling measurement is not performed.
摘要:
Support members are provided on the terminal portions of a sensor main body. In this state, a seal portion is formed by molding, and the seal portion seals the terminal portions of the sensor main body. During molding, external pressure acts on a housing. However, since four electrode wires pulled out from the housing are supported by insulating support members, the four electrode wires do not contact one another due to the pressure applied during molding, and thus do not short-circuit.
摘要:
A recall mechanism for a pressure gauge stores pressure reading outputs for effectively conveying nulllast valuenull information to a user when requested.
摘要:
A method for producing an isolated micro pressure sensor and the process for producing the same are disclosed. The method for manufacturing the isolated micro pressure sensor includes: (A) etching one surface of a substrate to form a rampart with an open cavity on the center of its top surface and with plate portions surrounding the rampart; (B) forming a plurality of first contact pads on said plate portions of the substrate outside said rampart; (C) forming a plurality of second contact pads, a plurality of piezo-resistors, thermo sensors, temperature-controlling elements and circuit patterns on a bulk silicon wafer; (D) forming a plurality of grooves on the periphery of the bulk silicon wafer; (E) bonding the bulk silicon wafer and the substrate; and (F) thinning said bulk silicon wafer until said bulk silicon wafer forming a thin membrane.
摘要:
The invention relates to a pressure sensor with an MEM structure (micro electro mechanical structure), which has a hollow housing (8) in which a semiconductor chip (2) with a pressure-sensitive area (4) is arranged. In its interior (12) and with parts of the semiconductor chip (2), the housing is covered by a first plastic compound (15), which has a lower level of deformation than a second plastic compound (16), which partly covers the pressure-sensitive area (4) of the semiconductor chip (2).
摘要:
The invention is intended to provide a small and highly reliable pressure sensor, which has a smaller number of components and can be produced by using a mold for resin molding in common. A sensor unit (11) is molded with resin. and includes a semiconductor chip (1) for converting the change in pressure of a medium introduced through an introduction hole for measurement into an electric signal. A lead member (12) has one end exposed in a connector (23) and is electrically connected to the semiconductor chip (1) in the sensor unit (11) beforehand. Pressure is applied to the semiconductor chip (1) through a pipe (22). An outer case (21) is integrally formed of synthetic resin by insert molding of the sensor unit (11), the lead member (12) and the pipe (22).