Abstract:
A receiver includes: an automatic gain controller (AGC) configured to receive an analog signal; an analog-to-digital converter (ADC) configured to receive an output from the AGC and to output a digitized signal, wherein a most significant bit of the digitized signal corresponds to a sliced data, and a least significant bit of the digitized signal corresponds to an error signal; and an adaptation unit configured to control the AGC, the ADC, or both the AGC and the ADC, based at least in part on the digitized signal to achieve a desired data digitization and data slicing.
Abstract:
A continuous time linear equalizer comprises an input of a first equalizer path configured to receive a first differential input signal; an input of a second equalizer path configured to receive a second differential input signal; a first programmable load capacitor coupled to an output of the first equalizer path; a second programmable load capacitor coupled to an output of the second equalizer path; and a programmable source capacitor coupled between the first equalizer path and the second equalizer path.
Abstract:
In a receiver, there is a precursor iterative canceller (“PIC”) having first and second paths. A postcursor decision block is coupled to the PIC to provide a decision signal thereto. The PIC includes: comparators for receiving an input signal and corresponding threshold inputs for precursor ISI speculation; and select circuits for selecting a first speculative input for the first path and a second speculative input for the second path, respectively associated with a negative precursor contribution and a positive precursor contribution. The first path and the second path in combination include at least a first stage and a second stage for processing the first speculative input and the second speculative input. The decision signal is provided to the first stage and to the select circuits. The select circuits are coupled to receive the decision signal for selection of the first speculative input and the second speculative input.
Abstract:
An example method for clock and data recovery (CDR) includes generating, in a set of slicers of a receiver, in addition to a data signal and a first error signal, at least one additional error signal. The method further includes receiving, at a frequency detector (FD) of a CDR unit of the receiver, the data signal, the first error signal, and the at least one additional error signal, and processing them to generate a FD output. The method still further includes multiplying the FD output by a user-defined FD gain, and adding the FD output, as multiplied by the FD gain, in a frequency path of the CDR unit.
Abstract:
A multiplexer (MUX) calibration system includes main MUX circuitry, first replica MUX circuitry, digital-to-analog (DAC) circuitry, detection circuitry, and control circuitry. The main MUX circuitry receives clock signals and outputs a first data signal based on the clock signals. The first replica MUX circuitry receives the clock signals and outputs a second data signal based on the clock signals. The DAC circuitry generates an offset voltage. The detection circuitry receives the second data signal and the offset voltage and generates a first error signal based on one or more of the second data signal and the offset voltage. The control circuitry receives the first error signal and generates a first control signal indicating an adjustment to the clock signals.
Abstract:
An equalizer circuit including a filter, equalization circuitry, and a filter adaptation circuit. The filter is configured to produce a linearized signal based at least in part on a received input signal and a nonlinear transfer function. The equalization circuitry is configured to filter inter-symbol interference (ISI) and detect one or more data symbols in the linearized signal. The equalization circuitry is further configured to produce an error signal indicating an amount of error in the detected data symbols. The filter adaptation circuit is configured to dynamically adjust the nonlinear transfer function of the filter based at least in part on the error signal from the equalization circuitry.
Abstract:
In an example, an apparatus for detecting signal loss on a serial communication channel coupled to a receiver includes an input, a detector, and an output circuit. The input is configured to receive decisions generated by sampling the serial communication channel using multiplexed decision paths in a decision feedback equalizer (DFE). The detector is coupled to the input and configured to monitor the decisions for at least one pattern generated by the multiplexed decision paths in response to absence of a serial data signal on the serial communication channel. The output circuit is coupled to the detector and configured to assert loss-of-signal in response detection of the at least one pattern by the detector.
Abstract:
An example method of performing an eye-scan in a receiver includes: generating digital samples from an analog signal input to the receiver based on a sampling clock, the sampling clock phase-shifted with respect to a reference clock based on a phase interpolator (PI) code; equalizing the digital samples based on first equalization parameters of a plurality of equalization parameters of the receiver; adapting the plurality of equalization parameters and performing clock recovery based on the digital samples to generate the PI code; and performing a plurality of cycles of locking the plurality of equalization parameters, suspending phase detection in the clock recovery, offsetting the PI code, collecting an output of the receiver, resuming the phase detection in the clock recovery, and unlocking the equalization parameters to perform the eye scan.
Abstract:
A receiver relates generally to channel adaptation. In this receiver, a first signal processing block is coupled to a communications channel. The first signal processing block includes: an AGC block and a CTLE block for receiving a modulated signal for providing an analog signal; an ADC for converting the analog signal to digital samples; and an FFE block for equalizing the digital samples to provide equalized samples. A second signal processing block includes: a DFE block for receiving the equalized sampled for providing re-equalized samples; and a slicer coupled to the DFE block for slicing the re-equalized samples. A receiver adaptation block is coupled to the first signal processing block and the second signal processing block. The receiver adaptation block is configured for providing an AGC adaptation, a CTLE adaptation, and a slicer adaptation to the communications channel.
Abstract:
In a receiver, a decision feedback equalizer (“DFE”) receives an analog input signal. The DFE includes a subtraction block for subtracting weighted postcursor decisions from an analog input signal to provide an analog output signal. A postcursor decision block coupled to the DFE compares the analog output signal against positive and negative values of a postcursor coefficient to provide first and second possible decisions for selecting a current postcursor-based decision therebetween responsive to a previous postcursor-based decision. A precursor cancellation block receives the analog output signal, the previous postcursor-based decision and the current postcursor-based decision for providing a digital output signal for a previous sample of the analog input signal.