Abstract:
Some embodiments of the present disclosure relate to a memory array comprising memory cells having vertical gate-all-around (GAA) selection transistors. In some embodiments, the memory array has a source region disposed within an upper surface of a semiconductor body, and a semiconductor pillar of semiconductor material extending outward from the upper surface of the semiconductor body and having a channel region and an overlying drain region. A gate region vertically overlies the source region at a position laterally separated from sidewalls of the channel region by a gate dielectric layer. A first metal contact couples the drain region to a data storage element that stores data. The vertical GAA selection transistors provide for good performance, while decreasing the size of the selection transistor relative to a planar MOSFET, so that the selection transistors do not negatively impact the size of the memory array.
Abstract:
Some embodiments relate to an integrated circuit device including an array of memory cells disposed over a semiconductor substrate. An array of first metal lines are disposed at a first height over the substrate and are connected to the memory cells of the array. Each of the first metal lines has a first cross-sectional area. An array of second metal lines are disposed at a second height over the substrate and are connected to the memory cells of the array. Each of the second metal lines has a second cross-sectional area which is greater than the first cross-sectional area.
Abstract:
Some aspects of this disclosure relate to a memory device. The memory device includes a collector region having a first conductivity type and which is coupled to a source line of the memory device. A base region is formed over the collector region and has a second conductivity type. A gate structure is coupled to the base region and acts as a shared word line for first and second neighboring memory cells of the memory device. First and second emitter regions are formed over the base region and have the first conductivity type. The first and second emitter regions are arranged on opposite sides of the gate structure. First and second contacts extend upwardly from the first and second emitter regions, respectively, and couple the first and second emitter regions to first and second data storage elements, respectively, of the first and second neighboring memory cells, respectively.
Abstract:
Some aspects of this disclosure relate to a memory device. The memory device includes a collector region having a first conductivity type and which is coupled to a source line of the memory device. A base region is formed over the collector region and has a second conductivity type. A gate structure is coupled to the base region and acts as a shared word line for first and second neighboring memory cells of the memory device. First and second emitter regions are formed over the base region and have the first conductivity type. The first and second emitter regions are arranged on opposite sides of the gate structure. First and second contacts extend upwardly from the first and second emitter regions, respectively, and couple the first and second emitter regions to first and second data storage elements, respectively, of the first and second neighboring memory cells, respectively.
Abstract:
An integrated circuit device includes an array of RRAM cells, an array of bit lines for the array of RRAM cells, and an array of source lines for the array of RRAM cells. Both the source lines and the bit lines are in metal interconnect layers above the RRAM cells. The source line are thereby provided with a higher than conventional wire size, which increases the reset speed by approximately one order of magnitude. The lifetime of the RRAM transistors and the durability of the RRAM device are consequentially improved to a similar degree.
Abstract:
Some aspects of this disclosure relate to a memory device. The memory device includes a collector region having a first conductivity type and which is coupled to a source line of the memory device. A base region is formed over the collector region and has a second conductivity type. A gate structure is coupled to the base region and acts as a shared word line for first and second neighboring memory cells of the memory device. First and second emitter regions are formed over the base region and have the first conductivity type. The first and second emitter regions are arranged on opposite sides of the gate structure. First and second contacts extend upwardly from the first and second emitter regions, respectively, and couple the first and second emitter regions to first and second data storage elements, respectively, of the first and second neighboring memory cells, respectively.
Abstract:
Some embodiments of the present disclosure relate to a vertical MOSFET selection transistor that is configured to suppress leakage voltage in the memory cell without limiting the size of the memory cell. The memory selection transistor has a semiconductor body with first and second trenches that define a raised semiconductor structure having a source region, a channel region, and a drain region. A gate structure has a first gate electrode in the first trench, which extends vertically along a first side of the raised semiconductor structure, and a second gate electrode in the second trench, which extends vertically along an opposite, second side of the raised semiconductor structure. The first and second gate electrodes collectively control the flow of current between the source and drain region in the raised semiconductor structure. An electrical contact couples the drain region to a data storage element configured to store data.
Abstract:
Some embodiments of the present disclosure relate to a memory array comprising memory cells having vertical gate-all-around (GAA) selection transistors. In some embodiments, the memory array has a source region disposed within an upper surface of a semiconductor body, and a semiconductor pillar of semiconductor material extending outward from the upper surface of the semiconductor body and having a channel region and an overlying drain region. A gate region vertically overlies the source region at a position laterally separated from sidewalls of the channel region by a gate dielectric layer. A first metal contact couples the drain region to a data storage element that stores data. The vertical GAA selection transistors provide for good performance, while decreasing the size of the selection transistor relative to a planar MOSFET, so that the selection transistors do not negatively impact the size of the memory array.
Abstract:
Some embodiments of the present disclosure relate to a vertical MOSFET selection transistor that is configured to suppress leakage voltage in the memory cell without limiting the size of the memory cell. The memory selection transistor has a semiconductor body with first and second trenches that define a raised semiconductor structure having a source region, a channel region, and a drain region. A gate structure has a first gate electrode in the first trench, which extends vertically along a first side of the raised semiconductor structure, and a second gate electrode in the second trench, which extends vertically along an opposite, second side of the raised semiconductor structure. The first and second gate electrodes collectively control the flow of current between the source and drain region in the raised semiconductor structure. An electrical contact couples the drain region to a data storage element configured to store data.