Abstract:
A method of operating a resistive memory device and a resistive memory system including a resistive memory device is for a resistive memory device including a plurality of bit lines and at least one dummy bit line. The method of operating the resistive memory device includes detecting a first address accompanying a first command, generating a plurality of inhibit voltages for biasing non-selected lines, and providing to a first dummy bit line a first inhibit voltage selected from among the plurality of inhibit voltages based on a result of detecting the first address.
Abstract:
A method is for operating a memory device including a plurality of memory cells disposed in regions where a plurality of first signal lines and a plurality of second signal lines cross each other. The method includes applying an initial voltage to the plurality of first signal lines, floating the plurality of first signal lines to which the initial voltage is applied, applying a second inhibit voltage to the plurality of second signal lines, and increasing voltage levels of the plurality of first signal lines to a first inhibit voltage level via capacitive coupling between the plurality of first signal lines which are floated and the plurality of second signal lines to which the second inhibit voltage is applied.
Abstract:
The nonvolatile memory device using a variable resistance material and a method for driving the same are provided. A first clamping unit connected between a resistance memory cell and a first sensing node to provide a first clamping bias to the resistance memory cell. The first clamping bias changes over time. A first compensation unit provides a compensation current to the first sensing node. A first sense amplifier is connected to the first sensing node to sense a level change of the first sensing node. In response to if first data stored in the resistance memory cell, an output value of the first sense amplifier transitions to a different state after a first amount of time from a time point from where the first clamping bias starts. In response to second data that is different from the first data stored in the resistance memory cell, the output value of the first sense amplifier transitions to the different state after a second amount of time that is different from the first amount of time from the time point from where the first clamping bias starts.
Abstract:
The nonvolatile memory device using a variable resistance material and a method for driving the same are provided. A first clamping unit connected between a resistance memory cell and a first sensing node to provide a first clamping bias to the resistance memory cell. The first clamping bias changes over time. A first compensation unit provides a compensation current to the first sensing node. A first sense amplifier is connected to the first sensing node to sense a level change of the first sensing node. In response to if first data stored in the resistance memory cell, an output value of the first sense amplifier transitions to a different state after a first amount of time from a time point from where the first clamping bias starts. In response to second data that is different from the first data stored in the resistance memory cell, the output value of the first sense amplifier transitions to the different state after a second amount of time that is different from the first amount of time from the time point from where the first clamping bias starts.
Abstract:
A resistive memory device includes a memory cell array having a plurality of memory cells respectively connected to a plurality of first signal lines and a plurality of second signal lines crossing each other. A first write driver is configured to provide a write voltage to write data to the memory cells. A second write driver is configured to be disposed between the memory cell array and the first write driver and provide a write current generated based on the write voltage to a first signal line selected from among the plurality of first signal lines.
Abstract:
A resistive memory device includes a memory cell array that includes a plurality of memory layers stacked in a vertical direction. Each of the plurality of memory layers includes a plurality of memory cells disposed in regions where a plurality of first lines and a plurality of second lines cross each other. A bad region management unit defines as a bad region a first memory layer including a bad cell from among the plurality of memory cells and at least one second memory layer.
Abstract:
A resistive memory device includes a memory cell array that has a plurality of resistive memory cells that are arranged respectively on regions where a plurality of first signal lines and a plurality of second signal lines cross each other. A write circuit is connected to a selected first signal line that is connected to a selected memory cell from among the plurality of memory cells, and provides pulses to the selected memory cell. A voltage detector detects a node voltage at a connection node between the selected first signal line and the write circuit. A voltage generation circuit generates a first inhibit voltage and a second inhibit voltage that are applied respectively to unselected first and second signal lines connected to unselected memory cells from among the plurality of memory cells, and changes a voltage level of the second inhibit voltage based on the node voltage that is detected.
Abstract:
A method of operating a memory device includes determining a value of an operating current flowing through a selected first signal line, to which a selection voltage is applied, from among a plurality of first signal lines; dividing an array of memory cells into n blocks, n being an integer greater than 1, based on the value of the operating current; and applying inhibit voltages having different voltage levels corresponding to the n blocks to unselected ones of second signal lines included in the n blocks. Each of the unselected second signal lines is a pathway through which leakage current may potentially flow due to the operating current flowing through the selected first signal line and a memory cell addressed by the unselected second signal line and the selected first signal line.
Abstract:
A resistive memory device includes a memory cell array including a plurality vertically stacked layers having one layer designated as an interference-free layer and another layer designated as an access prohibited layer, wherein the interference-free layer and the access prohibited layer share a connection with at least one signal line and access operations directed to memory cells the access prohibited layer are prohibited.
Abstract:
A nonvolatile memory device, which has an improved read reliability through a refresh operation, and a memory system, are provided. The nonvolatile memory device includes a resistive memory cell, a reference resistor corresponding to the resistive memory cell, a reference sense amplifier electrically connected to the reference resistor and configured to change a transition time of an output value of the reference resistor, and a refresh request signal generator configured to output the refresh request signal for the resistive memory cell when the transition time of an output value of the reference resistor is in a preset refresh requiring period.