Abstract:
A semiconductor device includes an active region defined on a substrate, a gate electrode disposed on the active region and covering two adjacent corners of the active region, a drain area formed in the active region adjacent to a first side of the gate electrode, and a source area formed in the active region adjacent to a second side of the gate electrode. The first and second sides of the gate electrode are spaced apart from each other, and the first side has a bent shape.
Abstract:
A method of forming a capacitor structure includes forming a mold layer on a substrate, in which the substrate includes a plurality of plugs therein, partially removing the mold layer to form a plurality of openings, in which the plugs are exposed by the openings, forming a plurality of lower electrodes filling the openings, in which the lower electrodes have a pillar shape, removing an upper portion of the mold layer to expose upper portions of the lower electrodes, forming a supporting pattern on exposed upper sidewalls of the lower electrodes and on the mold layer, removing the mold layer, and sequentially forming a dielectric layer and an upper electrode on the lower electrodes and the supporting pattern.
Abstract:
There is provided a semiconductor device. The semiconductor device may include multiple contacts plugs, an insulation layer pattern, a metal oxide layer pattern, a metal pattern and a metal line. The contact plugs contact a substrate. The insulation layer pattern is formed between the contact plugs and has a top surface lower than those of the contact plugs. The metal oxide layer pattern is formed on the insulation layer pattern, and has a dielectric constant higher than that of silicon oxide. The metal pattern is formed on the metal oxide layer pattern and contacts sidewalls of the contact plugs. The metal line contacts top surfaces of the contact plugs and the metal pattern and extends thereon.
Abstract:
A semiconductor device is provided. The semiconductor device includes first and second storage electrodes formed to be spaced apart from each other on a substrate, an insulating continuous support pattern connected to top surfaces of the first and second storage electrodes, a storage dielectric layer formed to cover the first and second storage electrodes and the continuous support pattern, and a plate electrode formed on the storage dielectric layer. The continuous support pattern includes a first contact part connected to the top surface of the first storage electrode, a second contact part connected to the top surface of the second storage electrode, and a connection part connecting the first and second contact parts with each other.
Abstract:
In a method of manufacturing a vertical semiconductor device, an insulation layer and a sacrificial layer are alternatively and repeatedly formed on a substrate to define a structure. The structure is etched to form a hole therethrough that exposes the substrate. A first semiconductor pattern is formed in a lower portion of the hole, and a blocking pattern, a charge storage pattern, a tunnel insulation pattern and a first channel pattern are formed on a sidewall of the hole. A second channel pattern is formed on the first channel pattern and the semiconductor pattern, and a second semiconductor pattern is formed on a portion of the second channel pattern on the semiconductor pattern to define an upper channel pattern including the second channel pattern and the second semiconductor pattern. The sacrificial layers are replaced with a plurality of gates, respectively, including a conductive material.
Abstract:
A vertical semiconductor device includes a conductive pattern structure, a memory layer, a pillar structure, and second and third insulation patterns. The conductive pattern structure includes conductive patterns and insulation layers, and may include a first portion extending in a first direction and a second portion protruding from a sidewall of the first portion. The conductive pattern structures are arranged in a second direction perpendicular to the first direction to form a trench therebetween. The memory layer is formed on sidewalls of the conductive pattern structures. The pillar structures in the trench, each including a channel pattern and a first insulation pattern formed on the memory layer, are spaced apart from each other in the first direction. The second insulation pattern is formed between the pillar structures. The third insulation pattern is formed between some pillar structures, and has a shape different from a shape of the second insulation pattern.
Abstract:
A semiconductor device is provided. A cell region is disposed in a substrate. The cell region includes a memory cell. A peripheral region is disposed in the substrate. The peripheral region is adjacent to the cell region. The peripheral region has a trench isolation, a first active region and a second active region. The trench isolation is interposed between the first active region and the second active region. A common gate pattern is disposed on the peripheral region. The common gate pattern extends in a first direction and partially overlaps the first active region, the second active region and the trench isolation. A buried conductive pattern is enclosed by the trench isolation. The buried conductive pattern extends in a second direction crossing the first direction. A top surface of the buried conductive pattern is lower than a bottom surface of the common gate pattern.