Abstract:
A semiconductor device and a method of fabricating a semiconductor device, the device including an active region on a substrate, the active region being defined by a field region; gate trenches in the active region of the substrate; gate structures respectively formed in the gate trenches; and at least one carrier barrier layer in the substrate and under the gate trenches.
Abstract:
In a method of manufacturing a vertical semiconductor device, an insulation layer and a sacrificial layer are alternatively and repeatedly formed on a substrate to define a structure. The structure is etched to form a hole therethrough that exposes the substrate. A first semiconductor pattern is formed in a lower portion of the hole, and a blocking pattern, a charge storage pattern, a tunnel insulation pattern and a first channel pattern are formed on a sidewall of the hole. A second channel pattern is formed on the first channel pattern and the semiconductor pattern, and a second semiconductor pattern is formed on a portion of the second channel pattern on the semiconductor pattern to define an upper channel pattern including the second channel pattern and the second semiconductor pattern. The sacrificial layers are replaced with a plurality of gates, respectively, including a conductive material.
Abstract:
A vertical semiconductor device includes a conductive pattern structure in which insulation patterns and conductive patterns alternately and repeatedly stacked on the substrate. The conductive pattern structure includes an edge portion having a stair-stepped shape. Each of the conductive patterns includes a pad region corresponding to an upper surface of a stair in the edge portion. A pad conductive pattern is disposed to contact a portion of an upper surface of the pad region. A mask pattern is disposed on an upper surface of the pad conductive pattern. A contact plug penetrates the mask pattern to contact the pad conductive pattern.
Abstract:
In a method of manufacturing a vertical semiconductor device, an insulation layer and a sacrificial layer are alternatively and repeatedly formed on a substrate to define a structure. The structure is etched to form a hole therethrough that exposes the substrate. A first semiconductor pattern is formed in a lower portion of the hole, and a blocking pattern, a charge storage pattern, a tunnel insulation pattern and a first channel pattern are formed on a sidewall of the hole. A second channel pattern is formed on the first channel pattern and the semiconductor pattern, and a second semiconductor pattern is formed on a portion of the second channel pattern on the semiconductor pattern to define an upper channel pattern including the second channel pattern and the second semiconductor pattern. The sacrificial layers are replaced with a plurality of gates, respectively, including a conductive material.
Abstract:
In a method of manufacturing a semiconductor device, a gate structure is formed on a substrate. An ion implantation process is performed at an upper portion of the substrate exposed by the gate structure, so that an ion implantation region is formed to have an expanded volume. The ion implantation process uses ions that are identical to a material of the substrate.
Abstract:
A semiconductor device is provided. A cell region is disposed in a substrate. The cell region includes a memory cell. A peripheral region is disposed in the substrate. The peripheral region is adjacent to the cell region. The peripheral region has a trench isolation, a first active region and a second active region. The trench isolation is interposed between the first active region and the second active region. A common gate pattern is disposed on the peripheral region. The common gate pattern extends in a first direction and partially overlaps the first active region, the second active region and the trench isolation. A buried conductive pattern is enclosed by the trench isolation. The buried conductive pattern extends in a second direction crossing the first direction. A top surface of the buried conductive pattern is lower than a bottom surface of the common gate pattern.
Abstract:
A vertical memory device includes gate electrodes on a substrate and a first structure. The gate electrodes may be spaced apart from each other in a first direction perpendicular to an upper surface of the substrate. The first structure extends through the gate electrodes in the first direction, and includes a channel and a variable resistance structure sequentially stacked in a horizontal direction parallel to the upper surface of the substrate. The variable resistance structure may include quantum dots (QDs) therein.
Abstract:
A vertical semiconductor device includes a conductive pattern structure, a memory layer, a pillar structure, and second and third insulation patterns. The conductive pattern structure includes conductive patterns and insulation layers, and may include a first portion extending in a first direction and a second portion protruding from a sidewall of the first portion. The conductive pattern structures are arranged in a second direction perpendicular to the first direction to form a trench therebetween. The memory layer is formed on sidewalls of the conductive pattern structures. The pillar structures in the trench, each including a channel pattern and a first insulation pattern formed on the memory layer, are spaced apart from each other in the first direction. The second insulation pattern is formed between the pillar structures. The third insulation pattern is formed between some pillar structures, and has a shape different from a shape of the second insulation pattern.
Abstract:
In a method of manufacturing a vertical semiconductor device, an insulation layer and a sacrificial layer are alternatively and repeatedly formed on a substrate to define a structure. The structure is etched to form a hole therethrough that exposes the substrate. A first semiconductor pattern is formed in a lower portion of the hole, and a blocking pattern, a charge storage pattern, a tunnel insulation pattern and a first channel pattern are formed on a sidewall of the hole. A second channel pattern is formed on the first channel pattern and the semiconductor pattern, and a second semiconductor pattern is formed on a portion of the second channel pattern on the semiconductor pattern to define an upper channel pattern including the second channel pattern and the second semiconductor pattern. The sacrificial layers are replaced with a plurality of gates, respectively, including a conductive material.
Abstract:
A vertical semiconductor device includes conductive pattern structures extending in a first direction, a trench between two adjacent conductive pattern structures in a second direction crossing the first direction, a memory layer disposed on sidewalls of the trench, first insulation layers disposed in the trench and spaced apart from each other in the first direction, channel patterns disposed on the memory layer and in the trench and spaced apart from each other in the first direction, and etch stop layer patterns disposed in the trench. Each conductive pattern structure includes conductive patterns and insulation layers alternately stacked on an upper surface of the substrate. Each etch stop layer pattern is disposed between a corresponding first insulation layer and the blocking dielectric layer. Etch stop layer patterns are spaced apart from each other in the first direction.