Abstract:
An integrated circuit device incorporating a metallurgical bond to enhance thermal conduction to a heat sink. In a semiconductor device, a surface of an integrated circuit die is metallurgically bonded to a surface of a heat sink. In an exemplary method of manufacturing the device, the upper surface of a package substrate includes an inner region and a peripheral region. The integrated circuit die is positioned over the substrate surface and a first surface of the integrated circuit die is placed in contact with the package substrate. A metallic layer is formed on a second opposing surface of the integrated circuit die. A preform is positioned on the metallic layer and a heat sink is positioned over the preform. A joint layer is formed with the preform, metallurgically bonding the heat sink to the second surface of the integrated circuit die.
Abstract:
A semiconductor test device includes a test circuit having contacts for applying an electrical signal and measuring electrical parameters of the test circuit. The semiconductor test device also includes an integrally formed heating circuit comprising at least one circuit meander positioned adjacent the test circuit for raising a temperature within a portion of the test circuit.
Abstract:
Disclosed herein are novel support structures for pad reinforcement in conjunction with new bond pad designs for semiconductor devices. The new bond pad designs avoid the problems associated with probe testing by providing a probe region that is separate from a wire bond region. Separating the probe region 212 from the wire bond region 210 and forming the bond pad 211 over active circuitry has several advantages. By separating the probe region 212 from the wire bond region 210, the wire bond region 210 is not damaged by probe testing, allowing for more reliable wire bonds. Also, forming the bond pad 211 over active circuitry, including metal interconnect layers, allows the integrated circuit to be smaller.
Abstract:
An inductor formed within an integrated circuit and a method for forming the inductor. The inductor comprises an underlying layer of aluminum formed in a first metallization layer and patterned and etched into the desired shape. In one embodiment the aluminum line comprises a spiral shape. According to a damascene process, a conductive runner, preferably of copper, is formed in a dielectric layer overlying the aluminum line and in electrical contact therewith. The aluminum line and the conductive runner cooperate to form the inductor. In another embodiment the aluminum line and the conductive runner are formed in a vertically spaced-apart orientation, with tungsten plugs or conductive vias formed to provide electrical connection therebetween. A method for forming the inductor comprises forming an aluminum conductive line and forming a conductive runner over the conductive line.
Abstract:
In described embodiments, elements of a wireless home network employ learned power security for the network. An access point, router, or other wireless base station emits and receives signals having corresponding signal strengths. Wireless devices coupled to the base station through a radio link are moved through the home network at boundary points of the home and the signal strength is measured at each device and communicated to the base station. Based on the signal strength information from the emitted signals measured at the boundary points and/or from measured signal strength information of signals received from the boundary points, the base station determines a network secure area. The base station declines permission of devices attempting to use or join the home network that exhibit signal strength characteristics less than boundary values for the network secure area.
Abstract:
In described embodiments, a point of sale system, such as a cash register, provides for translation from standard language to desired native language on a receipt. Translation might be initiated through user (e.g., purchaser) input, manually or from a credit card, for example, and translation is accomplished through a database accessed by the point of sale system. Consequently, the point of sale system provides at least one receipt to the purchaser that identifies purchases as line item descriptions, and, in some cases, the price paid for each line item, in the purchaser's native language that might be used, for example, to accurately prepare vouchers.
Abstract:
Disclosed herein are novel damage detection circuitries implemented on the periphery of a semiconductor device. The circuitries disclosed herein enable the easy identification of cracks and deformation, and other types of damage that commonly occur during test and assembly processes of semiconductor devices.
Abstract:
The present invention provides a solder bump structure. In one aspect, the solder bump structure is utilized in a semiconductor device, such as an integrated circuit. The semiconductor device comprises active devices located over a semiconductor substrate, interconnect layers comprising copper formed over the active devices, and an outermost metallization layer positioned over the interconnect layers. The outermost metallization layer comprises aluminum and includes at least one bond pad and at least one interconnect runner each electrically connected to an interconnect layer. An under bump metallization layer (UBM) is located over the bond pad, and a solder bump is located over the UBM.
Abstract:
The present invention provides an interconnect structure, a method of manufacture therefor, and an integrated circuit including the same. The interconnect structure, among other elements, may include a tungsten nitride layer located within an opening in a dielectric layer, and a conductive plug located over the tungsten nitride layer and within the opening. Thus, in certain embodiments the present invention is free of a titanium/titanium nitride layer, and any defects associated with those layers.
Abstract:
An inductor formed within an integrated circuit and a method for forming the inductor. The inductor comprises an underlying layer of aluminum formed in a first metallization layer and patterned and etched into the desired shape. In one embodiment the aluminum line comprises a spiral shape. According to a damascene process, a conductive runner, preferably of copper, is formed in a dielectric layer overlying the aluminum line and in electrical contact therewith. The aluminum line and the conductive runner cooperate to form the inductor. In another embodiment the aluminum line and the conductive runner are formed in a vertically spaced-apart orientation, with tungsten plugs or conductive vias formed to provide electrical connection therebetween. A method for forming the inductor comprises forming an aluminum conductive line and forming a conductive runner over the conductive line.