Abstract:
In described embodiments, elements of a wireless home network employ learned power security for the network. An access point, router, or other wireless base station emits and receives signals having corresponding signal strengths. Wireless devices coupled to the base station through a radio link are moved through the home network at boundary points of the home and the signal strength is measured at each device and communicated to the base station. Based on the signal strength information from the emitted signals measured at the boundary points and/or from measured signal strength information of signals received from the boundary points, the base station determines a network secure area. The base station declines permission of devices attempting to use or join the home network that exhibit signal strength characteristics less than boundary values for the network secure area.
Abstract:
In described embodiments, a data collection device receives signals from one or more patient monitoring devices, the signals representing patient data and other vital signs measured at a patient. The data collection device employs statistical quality algorithms to track irregular behavior and out-of-bound events, the behavior and events either being pre-set, adaptively set, or otherwise defined within pre-determined limits. The data collection device communicates alerting signals to a caregiver's handheld device when the irregular behavior and out-of-bound events occur. The alerting signals contain information related to the patient data, irregular behavior and out-of-bound events, thereby allowing a caregiver to take appropriate action.
Abstract:
An integrated circuit device incorporating a metallurgical bond to enhance thermal conduction to a heat sink. In a semiconductor device, a surface of an integrated circuit die is metallurgically bonded to a surface of a heat sink. In an exemplary method of manufacturing the device, the upper surface of a package substrate includes an inner region and a peripheral region. The integrated circuit die is positioned over the substrate surface and a first surface of the integrated circuit die is placed in contact with the package substrate. A metallic layer is formed on a second opposing surface of the integrated circuit die. A preform is positioned on the metallic layer and a heat sink is positioned over the preform. A joint layer is formed with the preform, metallurgically bonding the heat sink to the second surface of the integrated circuit die.
Abstract:
In described embodiments, elements of a wireless home network employ learned power security for the network. An access point, router, or other wireless base station emits and receives signals having corresponding signal strengths. Wireless devices coupled to the base station through a radio link are moved through the home network at boundary points of the home and the signal strength is measured at each device and communicated to the base station. Based on the signal strength information from the emitted signals measured at the boundary points and/or from measured signal strength information of signals received from the boundary points, the base station determines a network secure area. The base station declines permission of devices attempting to use or join the home network that exhibit signal strength characteristics less than boundary values for the network secure area.
Abstract:
In described embodiments, a point of sale system, such as a cash register, provides for translation from standard language to desired native language on a receipt. Translation might be initiated through user (e.g., purchaser) input, manually or from a credit card, for example, and translation is accomplished through a database accessed by the point of sale system. Consequently, the point of sale system provides at least one receipt to the purchaser that identifies purchases as line item descriptions, and, in some cases, the price paid for each line item, in the purchaser's native language that might be used, for example, to accurately prepare vouchers.
Abstract:
An integrated circuit device incorporating a metallurgical bond to enhance thermal conduction to a heat sink. In a semiconductor device, a surface of an integrated circuit die is metallurgically bonded to a surface of a heat sink. In an exemplary method of manufacturing the device, the upper surface of a package substrate includes an inner region and a peripheral region. The integrated circuit die is positioned over the substrate surface and a first surface of the integrated circuit die is placed in contact with the package substrate. A metallic layer is formed on a second opposing surface of the integrated circuit die. A preform is positioned on the metallic layer and a heat sink is positioned over the preform. A joint layer is formed with the preform, metallurgically bonding the heat sink to the second surface of the integrated circuit die.
Abstract:
The invention provides, in one aspect, a semiconductor device that comprises an interconnect layer located over a semiconductor substrate. A passivation layer is located over the interconnect layer and having a solder bump support opening formed therein. Support pillars that comprise a conductive material are located within the solder bump support opening.
Abstract:
Disclosed herein are novel support structures for pad reinforcement in conjunction with new bond pad designs for semiconductor devices. The new bond pad designs avoid the problems associated with probe testing by providing a probe region that is separate from a wire bond region. Separating the probe region 212 from the wire bond region 210 and forming the bond pad 211 over active circuitry has several advantages. By separating the probe region 212 from the wire bond region 210, the wire bond region 210 is not damaged by probe testing, allowing for more reliable wire bonds. Also, forming the bond pad 211 over active circuitry, including metal interconnect layers, allows the integrated circuit to be smaller.
Abstract:
A mobile communication device having a plurality of mobile devices coupled to one another. The mobile communication device includes a first mobile device that has a screen display portion and a user input portion. The mobile communication device also includes at least one second mobile device detachably coupled to the first mobile device. The first mobile device is configured to function as a first standalone mobile communication device, and the second mobile device is configured to function as a second standalone mobile communication device when detached from the first mobile device. The second mobile device is detachably coupled to the first mobile device in such a way that the first mobile device continues to include the display screen portion and the user input portion when the second mobile device is detached from the first mobile device.
Abstract:
A semiconductor test device includes a test circuit having contacts for applying an electrical signal and measuring electrical parameters of the test circuit. The semiconductor test device also includes an integrally formed heating circuit comprising at least one circuit meander positioned adjacent the test circuit for raising a temperature within a portion of the test circuit.