Abstract:
A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
Abstract:
A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
Abstract:
A semiconductor device that has a flipchip semiconductor die and substrate. A first insulating layer is formed over the substrate. A via is formed through the first insulating layer. Conductive material is deposited in the via to form a conductive pillar or stacked stud bumps. The conductive pillar is electrically connected to a conductive layer within the substrate. A second insulating layer is formed over the first insulating layer. Bump material is formed over the conductive pillar. The bump material is reflowed to form a bump. The first and second insulating layers are removed. The semiconductor die is mounted to the substrate by reflowing the bump to a conductive layer of the die. The semiconductor die also has a third insulating layer formed over the conductive layer and an active surface of the die and UBM formed over the first conductive layer and third insulating layer.
Abstract:
A semiconductor device that has a flipchip semiconductor die and substrate. A first insulating layer is formed over the substrate. A via is formed through the first insulating layer. Conductive material is deposited in the via to form a conductive pillar or stacked stud bumps. The conductive pillar is electrically connected to a conductive layer within the substrate. A second insulating layer is formed over the first insulating layer. Bump material is formed over the conductive pillar. The bump material is reflowed to form a bump. The first and second insulating layers are removed. The semiconductor die is mounted to the substrate by reflowing the bump to a conductive layer of the die. The semiconductor die also has a third insulating layer formed over the conductive layer and an active surface of the die and UBM formed over the first conductive layer and third insulating layer.