Abstract:
Circuits for die-to-die clock distribution are provided. A system includes a transmit clock tree on a first die and a receive clock tree on a second die. The transmit clock tree and the receive clock tree are the same, or very nearly the same, so that the insertion delay for a given bit on the transmit clock tree is the same as an insertion delay for a bit corresponding to the given bit on the receive clock tree. While there may be clock skew from bit-to-bit within the same clock tree, corresponding bits on the different die experience the same clock insertion delays.
Abstract:
A multi-rank memory bus architecture is provided in which an active DRAM is unterminated and an inactive DRAM terminates to increase the data eye width at the active DRAM.
Abstract:
Circuits and methods for loopback testing are provided. A die incorporates a receiver (RX) to each transmitter (TX) as well as a TX to each RX. This architecture is applied to each bit so, e.g., a die that transmits or receives 32 data bits during operation would have 32 transceivers (one for each bit). Focusing on one of the transceivers, a loopback architecture includes a TX data path and an RX data path that are coupled to each other through an external contact, such as a via at the transceiver. The die further includes a transmit clock tree feeding the TX data path and a receive clock tree feeding the RX data path. The transmit clock tree feeds the receive clock tree through a conductive clock node that is exposed on a surface of the die. Some systems further include a variable delay in the clock path.
Abstract:
A die-to-die data transmitter is disclosed with a pull-up one-shot circuit and a pull-down one-shot circuit, each forming a delay circuit that determines a variable preemphasis period.
Abstract:
A die is provided having an unterminated endpoint that capacitively loads its input impedance with a capacitance from capacitor while acting as a receiving endpoint and that isolates its output impedance from the capacitance while acting as a transmitting endpoint.
Abstract:
Circuits and methods for loopback testing are provided. A die incorporates a receiver (RX) to each transmitter (TX) as well as a TX to each RX. This architecture is applied to each bit so, e.g., a die that transmits or receives 32 data bits during operation would have 32 transceivers (one for each bit). Focusing on one of the transceivers, a loopback architecture includes a TX data path and an RX data path that are coupled to each other through an external contact, such as a via at the transceiver. The die further includes a transmit clock tree feeding the TX data path and a receive clock tree feeding the RX data path. The transmit clock tree feeds the receive clock tree through a conductive clock node that is exposed on a surface of the die. Some systems further include a variable delay in the clock path.
Abstract:
A multi-rank memory bus architecture is provided in which an active DRAM is unterminated and an inactive DRAM terminates to increase the data eye width at the active DRAM.
Abstract:
Methods, systems, and circuits for providing reception and capture of data using a mismatched impedance and an equalizer to save power are disclosed. A data receiver in communication with a transmission line, the data receiver having a termination impedance that is mismatched with respect to a characteristic impedance of the transmission line; and an equalizer in communication with the data receiver, the equalizer configured to receive a channel-transmitted data signal from the data receiver and to re-shape the signal to reduce distortion RC attenuation; wherein the circuit is configured to selectably operate in a first mode wherein the termination impedance is matched with respect to the characteristic impedance of the transmission line and a second mode wherein the termination impedance is mismatched with respect to the characteristic impedance of the transmission line and the signal is not recoverable but- for the equalizer.
Abstract:
Methods, systems, and circuits for providing reception and capture of data using a mismatched impedance and an equalizer to save power are disclosed. A data receiver in communication with a transmission line, the data receiver having a termination impedance that is mismatched with respect to a characteristic impedance of the transmission line; and an equalizer in communication with the data receiver, the equalizer configured to receive a channel-transmitted data signal from the data receiver and to re-shape the signal to reduce distortion RC attenuation; wherein the circuit is configured to selectably operate in a first mode wherein the termination impedance is matched with respect to the characteristic impedance of the transmission line and a second mode wherein the termination impedance is mismatched with respect to the characteristic impedance of the transmission line and the signal is not recoverable but for the equalizer.
Abstract:
Circuits for die-to-die clock distribution are provided. A system includes a transmit clock tree on a first die and a receive clock tree on a second die. The transmit clock tree and the receive clock tree are the same, or very nearly the same, so that the insertion delay for a given bit on the transmit clock tree is the same as an insertion delay for a bit corresponding to the given bit on the receive clock tree. While there may be clock skew from bit-to-bit within the same clock tree, corresponding bits on the different die experience the same clock insertion delays.