Abstract:
Methods and systems for direct atomic layer etching and deposition on or in a substrate using charged particle beams. Electrostatically-deflected charged particle beam columns can be targeted in direct dependence on the design layout database to perform atomic layer etch and atomic layer deposition, expressing pattern with selected 3D-structure. Reducing the number of process steps in patterned atomic layer etch and deposition reduces manufacturing cycle time and increases yield by lowering the probability of defect introduction. Local gas and photon injectors and detectors are local to corresponding columns, and support superior, highly-configurable process execution and control.
Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use patterns generated using the Hadamard transform as alignment and registration marks (Hadamard targets) for multiple-column charged particle beam lithography and inspection tools. Further, superior substrate alignment and layer-to-layer pattern registration accuracy can be achieved using Hadamard targets patterned in edge-proximal portions of the substrate that are typically stripped bare of resist prior to lithography, in addition to Hadamard targets patterned in inner substrate portions. High-order Hadamard targets can also be patterned and imaged to obtain superior column performance metrics for applications such as super-rapid beam calibration DOE, column matching, and column performance tracking. Superior alignment and registration, and column parameter optimization, allow significant yield gains.
Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use patterns generated using the Hadamard transform as alignment and registration marks (Hadamard targets) for multiple-column charged particle beam lithography and inspection tools. Further, superior substrate alignment and layer-to-layer pattern registration accuracy can be achieved using Hadamard targets patterned in edge-proximal portions of the substrate that are typically stripped bare of resist prior to lithography, in addition to Hadamard targets patterned in inner substrate portions. High-order Hadamard targets can also be patterned and imaged to obtain superior column performance metrics for applications such as super-rapid beam calibration DOE, column matching, and column performance tracking. Superior alignment and registration, and column parameter optimization, allow significant yield gains.
Abstract:
Methods, tools and systems for patterning of substrates using charged particle beams without photomasks, without a resist layer, using multiple different processes (different chemistry processes and/or different ones of material deposition, removal and/or modification) in the same vacuum space, wherein said processes are performed independently (without cross-interference) and simultaneously. As a result, the number of process steps can be reduced and some lithography steps can be eliminated, reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Also, because such processes are resist-less, layer-to-layer registration and other column control processes can be performed by imaging previous-layer features local to (or in contact with) features to be written in a next layer as designated by the design layout database.
Abstract:
Methods, systems and devices for using charged particle beams (CPBs) to write different die-specific, non-volatile, electronically readable data to different dies on a substrate. CPBs can fully write die-specific data within the chip interconnect structure during the device fabrication process, at high resolution and within a small area, allowing one or multiple usefully-sized values to be securely written to service device functions. CPBs can write die-specific data in areas readable or unreadable through a (or any) communications bus. Die-specific data can be used for, e.g.: encryption keys; communications addresses; manufacturing information (including die identification numbers); random number generator improvements; or single, nested, or compartmentalized security codes. Die-specific data and locations for writing die-specific data can be kept in encrypted form when not being written to the substrate to conditionally or permanently prevent any knowledge of said data and locations.
Abstract:
Methods and systems for direct atomic layer etching and deposition on or in a substrate using charged particle beams. Electrostatically-deflected charged particle beam columns can be targeted in direct dependence on the design layout database to perform atomic layer etch and atomic layer deposition, expressing pattern with selected 3D-structure. Reducing the number of process steps in patterned atomic layer etch and deposition reduces manufacturing cycle time and increases yield by lowering the probability of defect introduction. Local gas and photon injectors and detectors are local to corresponding columns, and support superior, highly-configurable process execution and control.
Abstract:
Methods, systems and devices for using different encryption keys written into interconnects of different functional blocks in different integrated circuits to securely encrypt and authenticate firmware, data, instructions and other messages transmitted among said functional blocks; and methods, systems and devices to obfuscate encryption keys to significantly increase the time and resources required to compromise those keys, ensuring encrypted data is only decrypted by authorized functional blocks, applications or users. Unique keys, small enough not to impact substrate surface area available for other device functions, can be written by charged particle beams such that multiple (or each of) functional blocks has a corresponding key unique within an IC and across a line of ICs and so that access to said keys is as limited (or nonexistent) as desired. Circuits embodying key bits can also be distributed throughout ICs and across layers, uniquely to individual functional blocks in individual ICs, to obfuscate patterns implementing keys and thereby raising time and resource cost to reverse engineer keys to prohibitive levels.
Abstract:
Methods, tools and systems for patterning of substrates using charged particle beams without photomasks, without a resist layer, using multiple different processes (different chemistry processes and/or different ones of material deposition, removal and/or modification) in the same vacuum space, wherein said processes are performed independently (without cross-interference) and simultaneously. As a result, the number of process steps can be reduced and some lithography steps can be eliminated, reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Also, because such processes are resist-less, layer-to-layer registration and other column control processes can be performed by imaging previous-layer features local to (or in contact with) features to be written in a next layer as designated by the design layout database.
Abstract:
Methods, devices and systems for targeted, maskless modification of material on or in a substrate using charged particle beams. Electrostatically-deflected charged particle beam columns can be targeted in direct dependence on the design layout database to perform direct and knock-on ion implantation, producing patterned material modifications with selected chemical and 3D-structural profiles. The number of required process steps is reduced, reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Local gas and photon injectors and detectors are local to corresponding individual columns, and support superior, highly-configurable process execution and control. Targeted implantation can be used to prepare the substrate for patterned blanket etch; patterned ALD can be used to prepare the substrate for patterned blanket deposition; neither process requiring photomasks or resist. Arrays of highly configurable beam columns can also be used to perform both positive and negative tone lithography in a single pass.
Abstract:
Methods, devices and systems for patterning of substrates using charged particle beams without photomasks and without a resist layer. Material can be deposited onto a substrate, as directed by a design layout database, localized to positions targeted by multiple, matched charged particle beam columns. Reducing the number of process steps, and eliminating lithography steps, in localized material addition has the dual benefit of reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Furthermore, highly localized, precision material deposition allows for controlled variation of deposition rate and enables creation of 3D structures. Local gas injectors and detectors, and local photon injectors and detectors, are local to corresponding ones of the columns, and can be used to facilitate rapid, accurate, targeted, highly configurable substrate processing, advantageously using large arrays of said beam columns.