Abstract:
Apparatuses, systems, and methods are disclosed for a read operation for a non-volatile memory. A method includes determining whether one or more non-volatile storage cells satisfy a predefined condition. A method includes preparing the one or more non-volatile storage cells for use prior to satisfying a read request from a storage client using the one or more non-volatile storage cells in response to determining that a predefined condition is satisfied.
Abstract:
An apparatus, system, and method are disclosed for accessing non-volatile cells. An interface module is configured to receive data for storage on a non-volatile memory medium. The non-volatile memory medium includes an array of cells, and each cell encodes a non-power-of-two number of states, or abodes per cell. A base conversion module is configured to convert the data from a binary representation to a representation in a non-binary base. The non-binary base uses a number of unique digits equal to the non-power-of-two number of abodes per cell. A write module is configured to store the converted data to the array of cells.
Abstract:
An apparatus, system, and method are disclosed for managing configuration parameters of a non-volatile storage device. The method includes storing a first set of configuration parameters for a non-volatile recording device. The first set of configuration parameters are configured for a storage operation on a storage element of the non-volatile recording device. The method also includes storing a second set of configuration parameters for the non-volatile recording device during execution of the storage operation on the storage element. The second set of configuration parameters are configured for a second storage operation on the storage element of the non-volatile recording device.
Abstract:
An apparatus, system, and method are disclosed to manage non-volatile media. A media characteristic module is configured to determine media characteristics for non-volatile media. A configuration parameter module is configured to determine different configuration parameters for different storage cell abodes and/or for different groups of pages of the non-volatile media based on the determined media characteristics. A cell configuration module is configured to use the different configuration parameters for the different storage cell abodes and/or the different groups of pages of the non-volatile media.
Abstract:
Apparatuses, systems, methods, and computer program products are disclosed for storage operations for a non-volatile medium. A control module may be configured to divide a storage procedure into multiple portions. An execution module may be configured to execute multiple portions of a storage procedure independently. A storage request module may be configured to satisfy a storage request for one or more storage elements of a storage procedure between at least a pair of portions of a storage procedure.
Abstract:
A storage module is configured to determine a health metric of a storage division of a solid-state storage medium. The health metric may comprise a combination of factors, including, but not limited to: wear level, performance (e.g., program time, erase time, and the like), error rate, and the like. A wear level module may configure storage operations to reduce the wear rate of storage divisions having poor health metrics and/or heath metrics that are degrading more quickly than other storage divisions. Reducing wear rate may include deferring grooming operations, delaying use for storage operations, temporarily retiring the storage division, or the like. Storage divisions may be brought back into service at normal use rates in response determining that other portions of the storage media have been worn to the point that they exhibit similar health and/or reliability characteristics.
Abstract:
A memory device includes a memory array with a plurality of memory elements. Each memory element is configured to store data. The device includes an input/output (I/O) buffer coupled to the memory array. The I/O buffer is configured to receive data from an I/O interface of a memory device controller and write the data to the memory array. The device includes a memory control manager coupled to the memory array. The memory control manager is configured to pause a program operation to the memory array in response to receiving a pause command. The memory control manager is also configured to resume the program operation in response to receiving a resume command.
Abstract:
Apparatuses, systems, methods, and computer program products are disclosed for configuring storage cells. A method includes determining a usage history for a set of storage cells of a solid-state storage medium. A method includes adjusting a voltage threshold for a set of storage cells by an amount based at least in part on a usage history. A method includes configuring a set of storage cells to use an adjusted voltage threshold.
Abstract:
Apparatuses, systems, and methods are disclosed for a read operation for a non-volatile memory. A method includes determining whether one or more non-volatile storage cells satisfy a predefined condition. A method includes preparing the one or more non-volatile storage cells for use prior to satisfying a read request from a storage client using the one or more non-volatile storage cells in response to determining that a predefined condition is satisfied.
Abstract:
An apparatus, system, and method are disclosed for managing data reliability. A priority module is configured to receive a storage request for a non-volatile memory device. The storage request may include data associated with a priority. The non-volatile memory device includes a plurality of cells, and each cell encodes a plurality of bits. The bits for a cell provide distinct levels of quality of service. A select module is configured to select a bit for storing the data based on the priority of the data and the level of quality of service of the selected bit. A data management module is configured to manage the data to satisfy a write order for the plurality of bits.