Abstract:
Provided herein is a semiconductor device including a substrate; an active layer formed on top of the substrate; a protective layer formed on top of the active layer and having a first aperture; a source electrode, driving gate electrode and drain electrode formed on top of the protective layer; and a first additional gate electrode formed on top of the first aperture, wherein an electric field is applied to the active layer, protective layer and driving gate electrode due to a voltage applied to each of the source electrode, drain electrode and driving gate electrode, and the first additional gate electrode is configured to attenuate a size of the electric field applied to at least a portion of the active layer, protective layer and driving gate electrode.
Abstract:
Provided herein is a component package including a matching unit and a matching method thereof, the matching unit including: a substrate; a transmission line formed on the substrate, the transmission line being connected to a terminal of the component package; a bonding wire electrically connecting the transmission line and a central component; and a capacitor unit having a plurality of capacitors electrically connected with the transmission line by wiring connection, wherein an inductance of the matching unit is variable by adjusting a length of the bonding wire, and a capacitance of the matching unit is variable by increasing or reducing the number of capacitors electrically connected to the transmission line, of among the capacitors inside the capacitor unit, by extending or cutting off the wiring connection.
Abstract:
Disclosed are a field effect transistor for high voltage driving including a gate electrode structure in which a gate head extended in a direction of a drain is supported by a field plate embedded under a region of the gate head so as to achieve high voltage driving, and a manufacturing method thereof. Accordingly, the gate head extended in the direction of the drain is supported by the field plate electrically spaced by using an insulating layer, so that it is possible to stably manufacture a gate electrode including the extended gate head, and gate resistance is decreased by the gate head extended in the direction of the drain and an electric field peak value between the gate and the drain is decreased by the gate electrode including the gate head extended in the direction of the drain and the field plate proximate to the gate, thereby achieving an effect in that a breakdown voltage of a device is increased.
Abstract:
A high frequency device includes: a capping layer formed on an epitaxial structure; source and drain electrodes formed on the capping layer; a multilayer insulating pattern formed on entire surfaces of the source and drain electrodes and the capping layer in a step shape; a T-shaped gate passing through the multilayer insulating pattern and the capping layer to be in contact with the epitaxial structure; and a passivation layer formed along entire surfaces of the T-shaped gate and the multilayer insulating pattern.
Abstract:
Disclosed are a power semiconductor device and a method of fabricating the same which can increase a breakdown voltage of the device through a field plate formed between a gate electrode and a drain electrode and achieve an easier manufacturing process at the same time. The power semiconductor device according to an exemplary embodiment of the present disclosure includes a source electrode and a drain electrode formed on a substrate; a dielectric layer formed between the source electrode and the drain electrode to have a lower height than heights of the two electrodes and including an etched part exposing the substrate; a gate electrode formed on the etched part; a field plate formed on the dielectric layer between the gate electrode and the drain electrode; and a metal configured to connect the field plate and the source electrode.