Abstract:
Disclosed herein is a reinforcing system and method for reinforcing a contact pad of an integrated circuit. Specifically exemplified is a system and method that comprises a reinforcing structure interposed between a top contact pad layer and an underlying metal layer.
Abstract:
The present invention provides a capacitor for use in a semiconductor device having a damascene interconnect structure, such as a dual damascene interconnect, formed over a substrate of a semiconductor wafer. In one particularly advantageous embodiment, the capacitor, comprises a first capacitor electrode, such as copper, comprised of a portion of the damascene interconnect structure, an insulator layer formed on the damascene interconnect structure wherein the insulator layer is a passivation layer, such as silicon nitride. The passivation layer may be an outermost or final passivation layer, or it may be an interlevel passivation layer. The capacitor further includes a second capacitor electrode comprised of a conductive layer, such as aluminum, that is formed on at least a portion of the insulator layer.
Abstract:
An integrated circuit device incorporating a metallurgical bond to enhance thermal conduction to a heat sink. In a semiconductor device, a surface of an integrated circuit die is metallurgically bonded to a surface of a heat sink. In an exemplary method of manufacturing the device, the upper surface of a package substrate includes an inner region and a peripheral region. The integrated circuit die is positioned over the substrate surface and a first surface of the integrated circuit die is placed in contact with the package substrate. A metallic layer is formed on a second opposing surface of the integrated circuit die. A preform is positioned on the metallic layer and a heat sink is positioned over the preform. A joint layer is formed with the preform, metallurgically bonding the heat sink to the second surface of the integrated circuit die.
Abstract:
An integrated circuit structure includes a metallization level having a dual damascene trench structure formed in a layer of dielectric material. The dielectric material has an upper surface with a first degree of planarity. The metallization level includes a conductive layer formed in the trench structure with an upper surface characterized by the same level of planarity as the dielectric material upper surface. In certain embodiments, the upper surface of the conductive layer is substantially coplanar with the dielectric material upper surface.
Abstract:
A semiconductor test device includes a test circuit having contacts for applying an electrical signal and measuring electrical parameters of the test circuit. The semiconductor test device also includes an integrally formed heating circuit comprising at least one circuit meander positioned adjacent the test circuit for raising a temperature within a portion of the test circuit.
Abstract:
Disclosed herein are novel support structures for pad reinforcement in conjunction with new bond pad designs for semiconductor devices. The new bond pad designs avoid the problems associated with probe testing by providing a probe region that is separate from a wire bond region. Separating the probe region 212 from the wire bond region 210 and forming the bond pad 211 over active circuitry has several advantages. By separating the probe region 212 from the wire bond region 210, the wire bond region 210 is not damaged by probe testing, allowing for more reliable wire bonds. Also, forming the bond pad 211 over active circuitry, including metal interconnect layers, allows the integrated circuit to be smaller.
Abstract:
An inductor formed within an integrated circuit and a method for forming the inductor. The inductor comprises an underlying layer of aluminum formed in a first metallization layer and patterned and etched into the desired shape. In one embodiment the aluminum line comprises a spiral shape. According to a damascene process, a conductive runner, preferably of copper, is formed in a dielectric layer overlying the aluminum line and in electrical contact therewith. The aluminum line and the conductive runner cooperate to form the inductor. In another embodiment the aluminum line and the conductive runner are formed in a vertically spaced-apart orientation, with tungsten plugs or conductive vias formed to provide electrical connection therebetween. A method for forming the inductor comprises forming an aluminum conductive line and forming a conductive runner over the conductive line.
Abstract:
In described embodiments, elements of a wireless home network employ learned power security for the network. An access point, router, or other wireless base station emits and receives signals having corresponding signal strengths. Wireless devices coupled to the base station through a radio link are moved through the home network at boundary points of the home and the signal strength is measured at each device and communicated to the base station. Based on the signal strength information from the emitted signals measured at the boundary points and/or from measured signal strength information of signals received from the boundary points, the base station determines a network secure area. The base station declines permission of devices attempting to use or join the home network that exhibit signal strength characteristics less than boundary values for the network secure area.
Abstract:
The invention provides, in one aspect, a semiconductor device that comprises an interconnect layer located over a semiconductor substrate. A passivation layer is located over the interconnect layer and having a solder bump support opening formed therein. Support pillars that comprise a conductive material are located within the solder bump support opening.
Abstract:
Disclosed herein are novel support structures for pad reinforcement in conjunction with new bond pad designs for semiconductor devices. The new bond pad designs avoid the problems associated with probe testing by providing a probe region that is separate from a wire bond region. Separating the probe region 212 from the wire bond region 210 and forming the bond pad 211 over active circuitry has several advantages. By separating the probe region 212 from the wire bond region 210, the wire bond region 210 is not damaged by probe testing, allowing for more reliable wire bonds. Also, forming the bond pad 211 over active circuitry, including metal interconnect layers, allows the integrated circuit to be smaller.