-
公开(公告)号:US20240212720A1
公开(公告)日:2024-06-27
申请号:US18103278
申请日:2023-01-30
Applicant: Kyu Eun Lee , Hyoun-Joong Kong , Su-jin Kim , Hoorang Shin
Inventor: Kyu Eun Lee , Hyoun-Joong Kong , Su-jin Kim , Hoorang Shin
CPC classification number: G11B27/34 , G06V20/48 , G06V20/49 , G10L15/08 , G10L25/57 , G06V2201/03 , G10L2015/088
Abstract: Disclosed is a method and apparatus for providing timemarking based on speech recognition and a tag. The present embodiment provides a method and apparatus for providing timemarking based on speech recognition and a tag, in which after an audio and video of a selected medical video are separated, scene-based tag data extracted from the video and an audio-based text acquired from the audio are compared with a predefined keyword to determine a keyword for each section of the image, and then perform time marking for each section.
-
公开(公告)号:US12020801B2
公开(公告)日:2024-06-25
申请号:US17117898
申请日:2020-12-10
Applicant: HOWMEDICA OSTEONICS CORP.
Inventor: Sergii Poltaretskyi , Jean Chaoui , Damien Cariou
IPC: G16H20/40 , A61B5/00 , A61B5/11 , A61B17/14 , A61B17/16 , A61B17/17 , A61B34/00 , A61B34/10 , A61B90/00 , A61B90/92 , A61F2/40 , G02B27/00 , G02B27/01 , G06F3/01 , G06F3/04815 , G06F3/0482 , G06F30/10 , G06N3/08 , G06N20/00 , G06T7/00 , G06T7/11 , G06T7/55 , G06T11/00 , G06T19/00 , G06T19/20 , G09B5/06 , G09B9/00 , G09B19/00 , G09B23/28 , G16H30/20 , G16H30/40 , G16H40/20 , G16H40/60 , G16H40/63 , G16H40/67 , G16H50/30 , G16H50/50 , G16H50/70 , G16H70/20 , G16H70/60 , G16H80/00 , H04N13/122 , H04N13/332 , A61B17/00 , A61B17/15 , A61B34/20 , A61B90/50 , A61F2/46 , G06F3/0483 , G06N3/04 , G16H50/20
CPC classification number: G16H20/40 , A61B5/1114 , A61B5/1121 , A61B5/1127 , A61B5/681 , A61B17/142 , A61B17/1604 , A61B17/1626 , A61B17/1659 , A61B17/1684 , A61B17/1703 , A61B34/10 , A61B34/25 , A61B90/08 , A61B90/36 , A61B90/361 , A61B90/37 , A61B90/39 , A61B90/92 , A61F2/40 , A61F2/4081 , G02B27/0075 , G02B27/017 , G02B27/0172 , G06F3/011 , G06F3/04815 , G06F3/0482 , G06F30/10 , G06N3/08 , G06N20/00 , G06T7/0012 , G06T7/11 , G06T7/55 , G06T11/00 , G06T19/006 , G06T19/20 , G09B5/06 , G09B9/00 , G09B19/003 , G09B23/28 , G16H30/20 , G16H30/40 , G16H40/20 , G16H40/60 , G16H40/63 , G16H40/67 , G16H50/30 , G16H50/50 , G16H50/70 , G16H70/20 , G16H70/60 , G16H80/00 , H04N13/122 , H04N13/332 , A61B5/744 , A61B2017/00115 , A61B2017/00119 , A61B2017/00123 , A61B17/151 , A61B17/1775 , A61B17/1778 , A61B2034/102 , A61B2034/104 , A61B2034/105 , A61B2034/107 , A61B2034/108 , A61B2034/2048 , A61B2034/2051 , A61B2034/2055 , A61B2034/2065 , A61B2034/2068 , A61B2034/252 , A61B2034/254 , A61B2090/062 , A61B2090/067 , A61B2090/0801 , A61B2090/0807 , A61B2090/365 , A61B2090/366 , A61B2090/367 , A61B2090/368 , A61B2090/373 , A61B2090/374 , A61B2090/3762 , A61B2090/378 , A61B2090/3937 , A61B2090/3945 , A61B2090/397 , A61B2090/502 , A61B2505/05 , A61B2562/0219 , A61F2002/4011 , A61F2/4606 , A61F2/4612 , A61F2002/4633 , A61F2002/4658 , A61F2002/4668 , G02B2027/0141 , G02B2027/0174 , G06F3/0483 , G06N3/04 , G06T2200/24 , G06T2207/10016 , G06T2207/20036 , G06T2207/20081 , G06T2207/20084 , G06T2207/30008 , G06T2207/30052 , G06T2207/30204 , G06T2210/41 , G06T2219/2004 , G06V2201/03 , G16H50/20
Abstract: An example method includes displaying, via a visualization device and overlaid on a portion of an anatomy of a patient viewable via the visualization device, a virtual model of the portion of the anatomy obtained from a virtual surgical plan for an orthopedic joint repair surgical procedure to attach a prosthetic to the anatomy; and displaying, via the visualization device and overlaid on the portion of the anatomy, a virtual guide that guides at least one of preparation of the anatomy for attachment of the prosthetic or attachment of the prosthetic to the anatomy.
-
公开(公告)号:US12019008B2
公开(公告)日:2024-06-25
申请号:US18064759
申请日:2022-12-12
Applicant: VISIONGATE, INC.
Inventor: Michael G. Meyer , Laimonas Kelbauskas , Rahul Katdare , Daniel J. Sussman , Timothy Bell , Alan C. Nelson
IPC: G01N15/1433 , G01N15/14 , G01N15/1434 , G01N33/483 , G06F18/214 , G06F18/243 , G06T7/00 , G06T11/00 , G06V10/40 , G06V10/762 , G06V10/774
CPC classification number: G01N15/1433 , G01N15/147 , G01N33/4833 , G06F18/2148 , G06F18/24317 , G06T7/0012 , G06T11/003 , G06V10/40 , G06V10/762 , G06V10/7747 , G01N2015/1445 , G06T2207/10101 , G06T2207/30024 , G06T2207/30096 , G06V2201/03
Abstract: A method for a system and method for morphometric detection of malignancy associated change (MAC) is disclosed including the acts of obtaining a sample; imaging cells to produce 3D cell images for each cell; measuring a plurality of different structural biosignatures for each cell from its 3D cell image to produce feature data; analyzing the feature data by first using cancer case status as ground truth to supervise development of a classifier to test the degree to which the features discriminate between cells from normal or cancer patients; using the analyzed feature data to develop classifiers including, a first classifier to discriminate normal squamous cells from normal and cancer patients, a second classifier to discriminate normal macrophages from normal and cancer patients, and a third classifier to discriminate normal bronchial columnar cells from normal and cancer patients.
-
174.
公开(公告)号:US20240205374A1
公开(公告)日:2024-06-20
申请号:US18595367
申请日:2024-03-04
Applicant: FUJIFILM Corporation
Inventor: Shumpei KAMON
IPC: H04N7/18 , A61B1/00 , G06F18/2431 , G06T7/00 , G06V10/764 , G06V10/82 , H04N5/76
CPC classification number: H04N7/183 , A61B1/000094 , A61B1/000096 , G06F18/2431 , G06T7/0012 , G06V10/764 , G06V10/82 , H04N5/76 , G06T2207/10068 , G06T2207/30096 , G06V2201/03
Abstract: An apparatus, a system, a method, and a program for medical image processing are provided. The apparatus includes one or more processors configured to acquire an endoscopic image generated through imaging of a living body, perform classification of lesion regions contained in the endoscopic image into two or more classes, identify a classification contributing region in the endoscopic image, the classification contributing region contributing, with a degree of contribution, to the classification of one of the lesion regions contained in the endoscopic image, generate a region image displaying a region in the endoscopic image, the region image displaying the classification contributing region with a density or a heat map according to the degree of contribution, and display the region image along with the endoscopic image on a monitor, where the region image is displayed at a position different from a position at which the endoscopic image is displayed.
-
175.
公开(公告)号:US12014828B2
公开(公告)日:2024-06-18
申请号:US17619173
申请日:2020-06-15
Applicant: Digital Diagnostics Inc.
Inventor: Elliot Swart , Elektra Efstratiou Alivisatos , Joseph Ferrante , Elizabeth Asai
IPC: G06T7/90 , A61B5/00 , A61B5/103 , G06T7/00 , G06V10/56 , G06V10/72 , G06V10/764 , G06V40/10 , G16H50/20
CPC classification number: G16H50/20 , A61B5/1032 , A61B5/441 , A61B5/7267 , A61B5/7275 , G06T7/0014 , G06T7/90 , G06V10/56 , G06V10/72 , G06V10/764 , G06V40/10 , A61B2576/02 , G06T2207/10024 , G06T2207/20076 , G06T2207/20081 , G06T2207/20084 , G06T2207/30088 , G06T2207/30168 , G06V2201/03
Abstract: Systems and methods are disclosed herein for determining a diagnosis based on a base skin tone of a patient. In an embodiment, the system receives a base skin tone image of a patient, generates a calibrated base skin tone image by calibrating the base skin tone image using a reference calibration profile, and determines a base skin tone of the patient based on the calibrated base skin tone image. The system receives a concern image of a portion of the patient's skin, and selects a set of machine learning diagnostic models from a plurality of sets of candidate machine learning diagnostic models based on the base skin tone of the patient, each of the sets of candidate machine learning diagnostic models trained to receive the concern image and output a diagnosis of a condition of the patient.
-
公开(公告)号:US12014502B2
公开(公告)日:2024-06-18
申请号:US18321132
申请日:2023-05-22
Applicant: Lunit Inc.
Inventor: Ga Hee Park , Kyung Hyun Paeng , Chan Young Ock , Sang Hoon Song , Suk Jun Kim
CPC classification number: G06T7/0012 , G06V20/698 , G16H15/00 , G16H30/40 , G06T2207/30024 , G06T2207/30096 , G06T2207/30168 , G06T2207/30204 , G06V2201/03
Abstract: A computing device includes at least one memory, and at least one processor configured to analyze at least one object expressed in a pathological slide image, evaluate quality of the pathological slide image based on a result of the analyzing, and perform at least one additional operation according to a result of the evaluating.
-
177.
公开(公告)号:US20240193772A1
公开(公告)日:2024-06-13
申请号:US18556405
申请日:2022-04-22
Inventor: Alexander R. A. ANDERSON , Mark ROBERTSON-TESSI , Chandler D. GATENBEE , Sandhya PRABHAKARAN
CPC classification number: G06T7/0012 , G06T5/70 , G06T7/11 , G06T7/136 , G06V10/82 , G06V20/695 , G06V20/698 , G16H20/40 , G16H30/40 , G06T2207/20081 , G06T2207/20084 , G06T2207/30024 , G06T2207/30061 , G06T2207/30096 , G06V2201/03
Abstract: A method of processing medical image data to predict disease progression in non-small cell lung cancer (NSCLC) patients includes receiving a multiplexed tissue image comprising a plurality of cells stained for one or more markers, evaluating the multiplexed tissue image using a machine learning model, and predicting whether a patient's NSCLC will progress based on the evaluation of the multiplexed tissue image using the machine learning model.
-
公开(公告)号:US20240189078A1
公开(公告)日:2024-06-13
申请号:US18530984
申请日:2023-12-06
Applicant: Align Technology, Inc.
Inventor: Christopher E. Cramer , Michael Austin Brown , Magdalena Blankenburg , Shipra Jain , Alexander Okupnik
IPC: A61C13/00 , A61B1/00 , A61B1/24 , A61B6/00 , A61B6/03 , A61B6/51 , A61C7/00 , G06T7/00 , G06T7/50 , G06T7/62 , G06T7/70 , G06V10/764 , G06V10/82 , G16H30/20
CPC classification number: A61C13/0004 , A61B1/000096 , A61B1/24 , A61B6/032 , A61B6/51 , A61B6/5247 , A61C7/002 , G06T7/0012 , G06T7/50 , G06T7/62 , G06T7/70 , G06V10/764 , G06V10/82 , G16H30/20 , G06T2200/24 , G06T2207/20081 , G06T2207/20084 , G06T2207/30036 , G06V2201/03
Abstract: A method of providing restorative decision support for a dental patient includes receiving image data of an intraoral cavity of a patient, the image data corresponding to one or more imaging modalities; deriving a plurality of parameters from the image data; applying a decision model to the plurality of parameters; and generating a restorative decision recommendation based on an output of the decision model.
-
公开(公告)号:US12005443B2
公开(公告)日:2024-06-11
申请号:US17064193
申请日:2020-10-06
Applicant: S.D. Sight Diagnostics Ltd.
Inventor: Ido Bachelet , Joseph Joel Pollak , Daniel Levner , Yonatan Bilu , Noam Yorav-Raphael
CPC classification number: B01L3/502715 , G01N15/1433 , G01N21/23 , G01N21/5907 , G01N21/6458 , B01L2300/0816 , B01L2300/0864 , G01N2015/016 , G01N2015/1006 , G01N2021/5957 , G01N2021/6419 , G01N2021/6421 , G06V2201/03 , G06V2201/04
Abstract: Apparatus and methods are described including successively acquiring a plurality of microscopic images of a portion of a blood sample, and tracking motion of pixels within the successively acquired microscopic images. Trypomastigote parasite candidates within the blood sample are identified, by identifying pixel motion that is typical of trypomastigote parasites. It is determined that the blood sample is infected with trypomastigote parasites, at least partially in response thereto. An output is generated indicating that that the blood sample is infected with trypomastigote parasites. Other applications are also described.
-
公开(公告)号:US20240177459A1
公开(公告)日:2024-05-30
申请号:US18059082
申请日:2022-11-28
Applicant: GE Precision Healthcare LLC
Inventor: Rahul Venkataramani , Vikram Reddy Melapudi
IPC: G06V10/774 , G06T7/00 , G06V10/82
CPC classification number: G06V10/774 , G06T7/0014 , G06V10/82 , G06V2201/03
Abstract: Systems/techniques that facilitate variable confidence machine learning are provided. In various embodiments, a system can access a medical image. In various aspects, the system can perform, via execution of a machine learning model, a regression task on the medical image, wherein the machine learning model can receive as input both the medical image and a user-specified confidence indicator.
-
-
-
-
-
-
-
-
-