Abstract:
A chamber for exposing a workpiece to charged particles includes a charged particle source for generating a stream of charged particles, a collimator configured to collimate and direct the stream of charged particles from the charged particle source along an axis, a beam digitizer downstream of the collimator configured to create a digital beam including groups of at least one charged particle by adjusting longitudinal spacing between the charged particles along the axis, a deflector downstream of the beam digitizer including a series of deflection stages disposed longitudinally along the axis to deflect the digital beams, and a workpiece stage downstream of the deflector configured to hold the workpiece.
Abstract:
A charged particle system such as a multi beam lithography system. A manipulator device manipulates one or more charged particle beams. The manipulator device includes at least one through opening in the plane of the planar substrate for passing at least one charged particle. Each through opening is provided with electrodes arranged in a first set of multiple first electrodes along a first part of a perimeter of the through opening and in a second set of multiple second electrodes along a second part of the perimeter. An electronic control circuit is arranged for providing voltage differences the electrodes in dependence of a position of the first and second electrode along the perimeter of the through opening.
Abstract:
A drawing apparatus of the present invention is an apparatus that performs drawing on a substrate with a plurality of charged particle beams and includes a blanking deflector array including a plurality of blanking deflectors configured to respectively blank the plurality of charged particle beams; and a controller configured to control the blanking deflector array based on drawing data. The controller is configured to control the blanking deflector array such that a position error of the plurality of charged particle beams on the substrate due to a magnetic field generated by the blanking deflector array is less than that in a case where the controller controls the blanking deflector array in accordance with initial drawing data.
Abstract:
Disclosed is an electrolytic plating method which includes forming plating films 5 and 6 having predetermined thicknesses in a plurality of regions 14 and 15 on a substrate 1. The electrolytic plating method includes arranging a resistive element 4 having ohmic characteristics in at least one of paths through which electrolytic plating currents flow into the plurality of the regions 14 and 15 on the substrate 1, respectively, and simultaneously growing the plating films 5 and 6 in the plurality of the regions 14 and 15 by electrolytic plating. The electrolytic plating method can form the plating films having different or same thicknesses in the plurality of the regions on the substrate.
Abstract:
The invention relates to a charged particle system such as a multi beam lithography system, comprising a manipulator device for manipulation of one or more charged particle beams, wherein the manipulator device comprises at least one through opening in the plane of the planar substrate for passing at least one charged particle beam there through. Each through opening is provided with electrodes arranged in a first set of multiple first electrodes along a first part of a perimeter of said through opening and in a second set of multiple second electrodes along a second part of said perimeter. An electronic control circuit is arranged for providing voltage differences the electrodes in dependence of a position of the first and second electrode along the perimeter of the through opening.
Abstract:
An apparatus and method for generating femtosecond electron beam are disclosed. The apparatus for generating electron beam by discharging an electron generated via a cathode to an anode includes a transmission window provided at one side of the cathode to allow incident laser to pass therethrough, a pinhole formed on the anode such that the pinhole corresponds to the position of the electron generated from the transmission window, and a focusing unit provided at one side of the cathode and generating an electric field to accelerate and at the same time concentrate the electron to the pinhole. Electrons are simultaneously concentrated and accelerated to the pinhole by an electric field generated by the focusing unit positioned at the cathode to generate femtosecond electron beam.
Abstract:
The invention relates to a charged particle multi-beamlet lithography system for exposing a target using a plurality of beamlets. The system has a beam generator, a beamlet blanker, and a beamlet projector. The beam generator is configured to generate a plurality of charged particle beamlets. The beamlet blanker is configured to pattern the beamlets. The beamlet projector is configured to project the patterned beamlets onto the target surface. The system further has a deflection device. The deflection device has a plurality of memory cells. Each memory cell is provided with a storage element and is connected to a switching electrode of a deflector.
Abstract:
A maskless lithography system for transferring a pattern onto the surface of a target. At least one beam generator for generating a plurality of beamlets. A plurality of modulators modulate the magnitude of a beamlet, and a control unit controls of the modulators. The control unit generates and delivers pattern data to the modulators for controlling the magnitude of each individual beamlet. The control unit includes at least one data storage for storing the pattern data, at least one readout unit for reading out the data from the data storage, at least one data converter for converting the data that is read out from the data storage into at least one modulated light beam, and at least one optical transmitter for transmitting the at least one modulated light beam to the modulation modulators.
Abstract:
The disclosure relates to a method for producing a multi-beam deflector array device with a plurality of openings for use in a particle-beam exposure apparatus, in particular a projection lithography system, said method starting from a CMOS wafer and comprising the steps of generating at least one pair of parallel trenches on the first side of the wafer blank at the edges of an area where the circuitry layer below is non-functional, the trenches reaching into the layer of bulk material; passivating the sidewalls and bottom of the trenches; depositing a conducting filling material into the trenches, thus creating columns of filling material serving as electrodes; attaching metallic contact means to the top of the electrodes; structuring of an opening between the electrodes, said opening stretching across abovementioned area so that the columns are arranged opposite of each other on the sidewalls of the opening.
Abstract:
A shutter device having two shutter plates, which shield between an IBS and a substrate, is configured such that the two shutter plates are disposed at symmetrical positions across the IBS and can perform an opening/closing operation in synchronization with a rotation of a rotation-link-member which is rotatably disposed surrounding the IBS. With the configuration, the shutter device can reduce an offset of a shield range in the opening/closing operation.