Method to embed planar FETs with finFETs

    公开(公告)号:US11355493B2

    公开(公告)日:2022-06-07

    申请号:US16858801

    申请日:2020-04-27

    Abstract: Various embodiments of the present disclosure are directed towards a method to embed planar field-effect transistor (FETs) with fin field-effect transistors (finFETs). A semiconductor substrate is patterned to define a mesa and a fin. A trench isolation structure is formed overlying the semiconductor substrate and surrounding the mesa and the fin. A first gate dielectric layer is formed on the mesa, but not the fin. The trench isolation structure recessed around the fin, but not the mesa, after the forming the first gate dielectric layer. A second gate dielectric layer is deposited overlying the first gate dielectric layer at the mesa and further overlying the fin. A first gate electrode is formed overlying the first and second gate dielectric layers at the mesa and partially defining a planar FET. A second gate electrode is formed overlying the second gate dielectric layer at the fin and partially defining a finFET.

    Magnetic random access memory device and formation method thereof

    公开(公告)号:US11217627B2

    公开(公告)日:2022-01-04

    申请号:US16886480

    申请日:2020-05-28

    Abstract: A method of forming a MRAM device includes forming an interconnect structure spanning a memory region and a peripheral region; forming a MTJ stack over the interconnect structure within the memory region; depositing a dielectric layer over the MTJ stack and spanning the memory region and the peripheral region; removing a first portion of the dielectric layer from the peripheral region, while leaving a second portion of the dielectric layer within the memory region; after removing the first portion of the dielectric layer from the peripheral region, forming a first IMD layer spanning the memory region and the peripheral region; forming a dual damascene structure through the first IMD layer to a metallization pattern of the interconnect structure within the peripheral region; and after forming the dual damascene structure within the peripheral region, forming a top electrode via in contact with a top electrode of the MTJ stack.

    Sidewall spacer structure for memory cell

    公开(公告)号:US11121308B2

    公开(公告)日:2021-09-14

    申请号:US16601723

    申请日:2019-10-15

    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a magnetoresistive random access memory (MRAM) cell over a substrate. A dielectric structure overlies the substrate. The MRAM cell is disposed within the dielectric structure. The MRAM cell includes a magnetic tunnel junction (MTJ) sandwiched between a bottom electrode and a top electrode. A conductive wire overlies the top electrode. A sidewall spacer structure continuously extends along a sidewall of the MTJ and the top electrode. The sidewall spacer structure includes a first sidewall spacer layer, a second sidewall spacer layer, and a protective sidewall spacer layer sandwiched between the first and second sidewall spacer layers. The first and second sidewall spacer layers comprise a first material and the protective sidewall spacer layer comprises a second material different than the first material.

    TECHNIQUES FOR MRAM MTJ TOP ELECTRODE TO VIA INTERFACE

    公开(公告)号:US20200075669A1

    公开(公告)日:2020-03-05

    申请号:US16423276

    申请日:2019-05-28

    Abstract: Some embodiments relate to an integrated circuit including a magnetoresistive random-access memory (MRAM) cell. The integrated circuit includes a semiconductor substrate and an interconnect structure disposed over the semiconductor substrate. The interconnect structure includes metal layers that are stacked over one another with dielectric layers disposed between. The metal layers include a lower metal layer and an upper metal layer disposed over the lower metal layer. A bottom electrode is disposed over and in electrical contact with the lower metal layer. A magnetic tunneling junction (MTJ) is disposed over an upper surface of bottom electrode. A top electrode is disposed over an upper surface of the MTJ. A sidewall spacer surrounds an outer periphery of the top electrode. Less than an entirety of a top electrode surface is in direct electrical contact with a metal via connected to the upper metal layer.

Patent Agency Ranking