Abstract:
A method of treating a sphincter provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity.
Abstract:
An electrode assembly for use in interventricular cardiac mapping includes one or more elongated splines each of which carries a plurality of spaced apart electrodes thereon. The body of each spline is formed of a plurality of alternating electrically conductive layers and the electrically non-conductive layers. A separate electrically conductive pathway is provided to connect each of the electrodes to a different one of the conductive layers. Each of the layers is electrically connected to an electrical signal processing device so that signals provided by each of the electrodes can be processed.
Abstract:
An ablation apparatus includes an elongated structure. An expandable membrane is positioned at least partially adjacent to an exterior of the elongated structure. The membrane is configured to receive a electrolytic solution and release at least a portion of the electrolytic through a membrane exterior surface. An electromagnetic energy delivery device is coupled to the expandable membrane. The electromagnetic energy delivery device is also configured to be coupled with a power source.
Abstract:
A probe for cardiac diagnosis and/or treatment has a catheter tube. The distal end of the catheter tube carries first and second electrode elements. The probe includes a mechanism for steering the first electrode element relative to the second electrode element so that the user can move the first electrode element into and out of contact with endocardial tissue without disturbing the contact of the second electrode element with endocardial tissue, even through the two electrode elements are carried on a common catheter tube. The distal end can carry a three dimensional structure having an open interior area. One of electrode elements can be steered through the open interior area of the structure. Electrode elements on the exterior of the structure can be used for surface mapping, while the electrode element inside the structure is steered to ablate tissue.
Abstract:
A method and system for treating aneurysms by applying RF energy to collagen. A catheter is disposed near the aneurysm and collagen is exuded into or near the aneurysm. RF energy is applied, using the same catheter or a second catheter, to the collagen, causing the collagen to harden and cover the weak region of the blood vessel wall, and providing a base onto which epithelial cells of the blood vessel may grow. The catheter comprises an electrophysiology catheter, including a ring electrode preferably disposed to deliver between about 5 and about 30 watts of RF energy at a frequency preferably between about 450 and about 600 Megahertz, to apply sufficient energy to cause the collagen to harden while avoiding damage to surrounding tissue.
Abstract:
A method and an apparatus is disclosed for delivering controlled heat to perform ablation to treat the benign prosthetic hypertrophy or hyperplasia (BPH). According to the method and the apparatus, the energy is transferred directly into the tissue mass which is to be treated in such a manner as to provide tissue ablation without damage to surrounding tissues. Automatic shut-off occurs when any one of a number of surrounding areas to include the urethra or surrounding mass or the adjacent organs exceed predetermined safe temperature limits. The constant application of the radio frequency energy over a maintained determined time provides a safe procedure which avoids electrosurgical and other invasive operations while providing fast relief to BPH with a short recovery time. The procedure may be accomplished in a doctor's office without the need for hospitalization or surgery.
Abstract:
A method and apparatus for ablating at least a portion of a nasal concha. The apparatus includes a catheter having a distal portion with a dimension configured for positioning through a nostril of a patient into a nasal meatus adjacent a nasal concha, and an energy delivery device coupled to the catheter distal portion including one or more energy delivering probes extendable from the catheter distal portion a sufficient distance to be inserted into an interior of the nasal concha to deliver ablative energy therein. The distal portion of the apparatus may also include an expandable member, expansion of the expandable member within the nasal meatus immobilizing the distal portion within the nasal meatus.
Abstract:
A method and apparatus for ablating at least a portion of a nasal concha. The apparatus includes a catheter having a distal portion with a dimension configured for positioning through a nostril of a patient into a nasal meatus adjacent a nasal concha, and an energy delivery device coupled to the catheter distal portion including one or more energy delivering probes extendable from the catheter distal portion a sufficient distance to be inserted into an interior of the nasal concha to deliver ablative energy therein. The distal portion of the apparatus may also include an expandable member, expansion of the expandable member within the nasal meatus immobilizing the distal portion within the nasal meatus.
Abstract:
A method for reducing a volume of a tongue provides a source of ablation energy and an ablation energy delivery device. At least a portion of the ablation energy delivery device is positioned in an interior of the tongue. A sufficient amount of energy is delivered from the energy delivery device into the interior of the tongue to debulk a section of the tongue without damaging a hypoglossal nerve. Thereafter, the at least portion of the ablation energy delivery device is removed from the interior of the tongue.
Abstract:
An apparatus reduces the volume of selected sections of a tongue. The apparatus includes a catheter means. An electrode means is at least partially positioned in an interior of the catheter means. The electrode means is configured to deliver sufficient electromagnetic energy to ablate an interior of the tongue without damaging a hypoglossal nerve of the tongue. An electrode advancement and retraction means is coupled to the electrode means to advance and retract at least a portion of the electrode means in and out of a selected tongue surface. A cabling means is coupled to the electrode means.