Abstract:
Systems for treating a mucosal surface of an alimentary canal tissue region are provided. The systems can include an elongate support structure, an expandable member positionable at a distal portion of the support structure and one or more radio frequency (RF) ablation electrodes carried by the expandable member. The elongate support structure and the expandable member can be adapted to place the one or more electrodes in contact with a mucosal surface of an alimentary canal tissue region. The system can further include an RF energy source connected to the one or more electrodes.
Abstract:
A method for treating a sphincter provides a polymer material having a liquid state. The method also provides a catheter having a distal end, a tissue piercing device carried by the distal end, and an energy delivery device coupled to the tissue piercing device. The tissue piercing device has a lumen. The method introduces the catheter into an esophagus and pierces an exterior sphincter tissue surface within with the tissue piercing device. The method advances the tissue piercing device into an interior sphincter tissue site and conveys the polymer material while in a liquid state through the lumen into the interior sphincter tissue site. The method delivers energy to the tissue piercing device to transform the polymer material into a less liquid state within the interior sphincter tissue site, to thereby remodel the sphincter.
Abstract:
Methods of accessing and ablating abnormal epithelium tissue in an alimentary canal are provided. The methods can include steps of (i) inserting an operative element into an alimentary canal such that the proximate to a portion of the alimentary canal having tissue to be ablated; and (ii) using the operative element to apply cryogenic ablation to a site of abnormal tissue.
Abstract:
A method of treating a sphincter provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity.
Abstract:
Methods treat a tissue region. In one arrangement, the methods deploy an endoscope in an esophagus and visualize with the endoscope a Z-line that marks a transition between esophageal tissue and stomach tissue by observing tissue color change at or near the Z-line. The methods deploy an electrode support structure over the endoscope at or near the Z-line visualized by the endoscope, wherein the endoscope serves as a guide for the electrode support structure. The methods introduce from the electrode support structure a tissue-piercing needle electrode into tissue at or near the Z-line and observe introduction of the tissue-piercing needle electrode using the endoscope. The methods couple the tissue-piercing electrode to a source of radio frequency energy to ohmically heat tissue and create a subsurface tissue lesion in tissue at or near the Z-line, and observe creation of the tissue lesion using the endoscope.
Abstract:
The present invention comprises a method of treating a sphincter that provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity.In another embodiment of the method of the invention, a method of treating a sphincter that provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. The sphincter, lower esophageal sphincter, stomach, cardia or fundus is stimulated to produce a transient relaxation of the sphincter. The portion of the sphincter, lower esophageal sphincter, stomach, cardia or fundus causing a relaxation of the sphincter is indentified. Energy is delivered from the sphincter electropotential mapping device to treat the portion the sphincter, lower esophageal sphincter, stomach, cardia or fundus causing the transient relaxation of the sphincter.
Abstract:
A device for treating a tissue region at or near a sphincter including a proximal support, a distal support and an expandable basket having a plurality of spines. The spines have a proximal portion, a distal portion and an intermediate portion therebetween, wherein the spines are movable from a first non-expanded position to a second expanded position wherein in the expanded position the intermediate portion of the spines extends outwardly radially beyond the proximal and distal portions of the spines. A plurality of electrodes are carried by the spines and movable outwardly to an outward position to penetrate tissue for application of energy to the tissue region.
Abstract:
A sphincter treatment apparatus has an introducer means including a distal portion means. An expandable device means includes a plurality of arm means. Each arm means of the plurality has a distal section means and a proximal section means. Each of distal sections means of the arm means are coupled and each of the proximal sections means of the arm means are coupled to the introducer means distal portion means. The expandable device means is configured to at least partially dilate a sphincter in a deployed state. An energy delivery device means is introduceable from the introducer means into a selected site of the sphincter. The energy delivery device means is configured to deliver sufficient energy to reduce a frequency of relaxation of the sphincter.
Abstract:
A sphincter treatment apparatus includes an energy delivery device introduction member including a proximal end with a first radius of curvature and a distal end with a second radius of curvature. The introduction member is configured to be introduced into the sphincter in a non-deployed state and to be expanded to a deployed state to at least partially expand the sphincter or an adjoining structure. An energy delivery device is coupled to the introduction member. A retainer member is coupled to the energy delivery device introduction member and configured to controllably position the introduction member in an orifice of the sphincter.
Abstract:
A method of treating a sphincter provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity. A method of treating a sphincter provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity.