Abstract:
Provided are resistive random access memory (ReRAM) cells having extended conductive layers operable as electrodes of other devices, and methods of fabricating such cells and other devices. A conductive layer of a ReRAM cell extends beyond the cell boundary defined by the variable resistance layer. The extended portion may be used a source or drain region of a FET that may control an electrical current through the cell or other devices. The extended conductive layer may be also operable as electrode of another resistive-switching cell or a different device. The extended conductive layer may be formed from doped silicon. The variable resistance layer of the ReRAM cell may be positioned on the same level as a gate dielectric layer of the FET. The variable resistance layer and the gate dielectric layer may have the same thickness and share common materials, though they may be differently doped.
Abstract:
A structure of a plasma CVD apparatus for forming a dense semiconductor film is provided. Further, a technique for forming a dense crystalline semiconductor film (e.g., a microcrystalline semiconductor film) without a cavity between crystal grains is provided. An electrode supplied with electric power for generating plasma is included in a reaction chamber of the plasma CVD apparatus. This electrode has a common plane on a surface opposite to a substrate, and the common plane is provided with depressed openings. Gas supply ports are provided on the bottom of the depressed openings or on the common plane of the electrode. The depressed openings are provided in isolation from one another.
Abstract:
Disclosed herein are thin film transistors (TFTs) and techniques for fabricating TFTs. A major plane of the gate electrode of the TFT may be vertically oriented with respect to a horizontal layer of polysilicon in which the TFT resides. An interface between the gate electrode and gate dielectric may be vertically oriented with respect to a horizontal layer of polysilicon in which the TFT resides. The TFT may have a channel width that is defined by a thickness of the horizontal layer of polysilicon. The TFT may be formed by etching a hole in a layer of polysilicon. Then, a gate electrode and gate dielectric may be formed in the hole by depositing layers of dielectric and conductor material on the sidewall. The body may be formed in the horizontal layer of polysilicon outside the hole.
Abstract:
A method for fabricating an integrated circuit includes providing a semiconductor substrate including a gate electrode structure thereon and sidewall spacers along sidewalls of the gate electrode structure to a first height along the sidewalls, forming a planarizing carbon-based polymer layer over the gate electrode structure and over the sidewall spacers, and etching a portion of the optical planarization layer to expose a top portion the gate electrode structure. Further, the method includes etching an upper portion of the sidewall spacers selective to the gate electrode structure so as to expose the sidewalls of the upper portion of the gate electrode structure and depositing a silicide-forming material over the top portion of the gate electrode structure and the sidewalls of the upper portion of the gate electrode structure. Still further, the method includes annealing the silicide-forming material.
Abstract:
A method for fabricating an integrated circuit includes providing a semiconductor substrate including a gate electrode structure thereon and sidewall spacers along sidewalls of the gate electrode structure to a first height along the sidewalls, forming a planarizing carbon-based polymer layer over the gate electrode structure and over the sidewall spacers, and etching a portion of the optical planarization layer to expose a top portion the gate electrode structure. Further, the method includes etching an upper portion of the sidewall spacers selective to the gate electrode structure so as to expose the sidewalls of the upper portion of the gate electrode structure and depositing a silicide-forming material over the top portion of the gate electrode structure and the sidewalls of the upper portion of the gate electrode structure. Still further, the method includes annealing the silicide-forming material.
Abstract:
The present invention provides a polysilicon manufacturing method that controls a growth direction of polysilicon, including the following steps: (1) forming a first buffer layer (20) on a substrate (10) through deposition; (2) applying a masking operation to form a lens-like structure (22) on a surface of the first buffer layer (20); (3) depositing and forming an amorphous silicon layer (40) on the first buffer layer (20) of which the surface comprises the lens-like structure (22) formed thereon; (4) subjecting the amorphous silicon layer (40) to rinsing; (5) irradiating the amorphous silicon layer (40) with an intense light (50) from the side of the substrate (10) so as to generate a crystal seed at a bottom of the amorphous silicon layer (40); and (6) applying a laser annealing operation to the amorphous silicon layer (40) that comprises a crystal seed generated therein so as to have amorphous silicon contained in the amorphous silicon layer (40) crystallized and forming a polysilicon layer (70). The present invention enables control of the growth direction of polysilicon.
Abstract:
A method of forming an oxide semiconductor includes a step of depositing an oxide semiconductor layer over a substrate by using a sputtering apparatus in which in a target containing indium, an element M (aluminum, gallium, yttrium, or tin), zinc, and oxygen, the substrate which faces a surface of the target, and a magnet unit comprising a first magnet and a second magnet on a rear surface side of the target are provided. In the method, deposition is performed under a condition that a maximum intensity of a horizontal magnetic field is greater than or equal to 350 G and less than or equal to 2000 G in a plane where a vertical distance toward the substrate from a surface of the magnet unit is 10 mm.
Abstract:
Embodiments described herein provide indium-gallium-zinc oxide (IGZO) devices, such as IGZO thin-film transistors (TFTs), and methods for forming such devices. A substrate is provided. A gate electrode is formed above the substrate. An IGZO channel layer is formed above the gate electrode. The IGZO channel layer has a first sub-layer including c-IGZO and a second sub-layer including a-IGZO. A source electrode and a drain electrode are formed above the IGZO channel layer.
Abstract:
The present invention provides technology for realizing higher purification of a polycrystalline silicon. First, trichlorosilane is prepared as a sample (S101) and then the carbon-containing impurities content in the trichlorosilane is analyzed by GC/MS-SIM method (S102). The quality of the trichlorosilane is determined based on the analysis results (S103) and the trichlorosilane determined to be a good material (S103: Yes) is used as the raw material for producing a high-purity polycrystalline silicon by CVD method (104). In case, the trichlorosilane determined to be a bad material (S103: No) is not used as the raw material for producing a polycrystalline silicon. When the impurities analysis by GC/MS-SIM method is performed using, as a separation column, a column having a non-polar column and a medium-polar column connected in series with each other, it is possible to simultaneously perform both of the separation of chlorosilanes and hydrocarbons and the separation of chlorosilanes and methylsilanes.
Abstract:
A memory cell includes a transistor device comprising a pair of source/drains, a body comprising a channel, and a gate construction operatively proximate the channel. The memory cell includes a capacitor comprising a pair of capacitor electrodes having a capacitor dielectric there-between. One of the capacitor electrodes is the channel or is electrically coupled to the channel. The other of the capacitor electrodes includes a portion of the body other than the channel. Methods are also disclosed.