Abstract:
An example image sensor structure includes an image layer. The image layer includes an array of light detectors disposed therein. A device stack is disposed over the image layer. An array of light guides is disposed in the device stack. Each light guide is associated with at least one light detector of the array of light detectors. A passivation stack is disposed over the device stack. The passivation stack includes a bottom surface in direct contact with a top surface of the light guides. An array of nanowells is disposed in a top layer of the passivation stack. Each nanowell is associated with a light guide of the array of light guides. A crosstalk blocking metal structure is disposed in the passivation stack. The crosstalk blocking metal structure reduces crosstalk within the passivation stack.
Abstract:
An example image sensor structure includes an image layer. The image layer includes an array of light detectors disposed therein. A device stack is disposed over the image layer. An array of light guides is disposed in the device stack. Each light guide is associated with at least one light detector of the array of light detectors. A passivation stack is disposed over the device stack. The passivation stack includes a bottom surface in direct contact with a top surface of the light guides. An array of nanowells is disposed in a top layer of the passivation stack. Each nanowell is associated with a light guide of the array of light guides. A crosstalk blocking metal structure is disposed in the passivation stack. The crosstalk blocking metal structure reduces crosstalk within the passivation stack.
Abstract:
Alighting device includes: a light emitting device including a plurality of light emitting elements arranged in curve having a first curvature; and a honeycomb member having an extendable and contractible honeycomb structure, arranged in curve having a second curvature larger than the first curvature, in an emission direction of light emitted from the light emitting device.
Abstract:
A test device, test system, and control method of the test device, which defines a light irradiating area in a reactor to prevent a decrease in magnitude of a detected signal that may result due to scattering of light that has penetrated other area of the reactor than an area containing an object for detection and improve a dynamic range. A test device may include a light source configured to irradiate light; a reactor configured to include at least one first area to contain an object for detection; and a photo detector configured to receive light that has been irradiated from the light source and has passed the reactor that contains the object for detection, wherein the light source is configured to limitedly irradiate the light to the first area of the reactor.
Abstract:
An optical sensing module is configured to detect a characteristic of a sample. The optical sensing module includes a light source, a light guide plate, a first cladding layer, a light converging layer, a filter layer, and a plurality of sensors. The light source is configured to provide an exciting beam. Positions of the sensors correspond to positions of the holes. After the exciting beam enters the light guide plate, at least one portion of the exciting beam is transmitted to the sample through a portion of the surface of the light guide plate exposed by the holes, the sample is excited by the exciting beam to emit a signal beam, and the signal beam passes through the light converging layer and the filter layer in an order and travels to the sensors. Another optical sensing module is also provided.
Abstract:
An optical sensing module is configured to detect a characteristic of a sample. The optical sensing module includes a light source, a light guide plate, a first cladding layer, a light converging layer, a filter layer, and a plurality of sensors. The light source is configured to provide an exciting beam. Positions of the sensors correspond to positions of the holes. After the exciting beam enters the light guide plate, at least one portion of the exciting beam is transmitted to the sample through a portion of the surface of the light guide plate exposed by the holes, the sample is excited by the exciting beam to emit a signal beam, and the signal beam passes through the light converging layer and the filter layer in an order and travels to the sensors. Another optical sensing module is also provided.
Abstract:
Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. The biosensor also includes a shield layer having apertures that are positioned relative to the input regions of corresponding light guides such that the light emissions propagate through the apertures into the corresponding input regions. The shield layer extends between adjacent apertures and is configured to block the excitation light and the light emissions incident on the shield layer between the adjacent apertures.
Abstract:
A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.
Abstract:
A low cost, compact, opto-mechanical system for particle analysis is disclosed. In embodiments of this disclosure, the system includes: a holder configured to rigidly secure a container that contains a liquid sample; an actuator configured to repetitively rotate the holder N degrees in a first direction and M degrees in a second direction different from the first direction, wherein N and M are real numbers greater than zero; a radiation source configured to generate a beam of radiation, the radiation source being rigidly attached to the holder; and a detector configured to receive radiation that is at least one of scattered, reflected, diffracted, refracted, or radiated from one or more particles within the liquid sample in response to the beam of radiation being incident upon the one or more particles.
Abstract:
Laser-based spectroscopy systems and methods including a laser source that emits a beam of radiation, an optical resonant cavity having at least two cavity mirrors, and at least one beam filtering element positioned along a path of the beam external to the cavity and having a front surface, wherein the front surface is oriented such that an intersection of the beam and the surface is at an angle, such as the Brewster's angle or a pseudo-Brewster's, that reduces or eliminates reflection of a predominant polarization component of the beam by the filtering element.