摘要:
The present invention provides a structure and method of forming a butting contact having protective spacers 50A that prevent shorting between a second polysilicon layer 60 and the substrate in a hole 20A in a isolation region 20. The following are provide: a isolation region 20, a first conductive line 30B over portions of the isolation region 20, and an inter-poly insulating layer 40. The protective spacers prevent shorts when the first conductive line 30B is misaligned and exposes a first portion of the isolation region 20 in a butt contact opening. A first photoresist layer 44 having a butt contact photoresist opening 44A over the first doped region 26 and over a first portion of the isolation is formed. The inter-poly insulating layer 40 is etched through the butt contact photoresist opening 44A and etches the first portion of the isolation region forming an isolation hole 20A. In an important step, protective spacers 50A are formed on the sidewalls of the isolation hole 20A. A second conductive layer 60 is formed over an inter-poly insulating layer 40, in the butt contact opening, and over the protective spacers 50A. The protective spacers 50A prevent the second conductive layer 60 from contacting the substrate in the hole 20A.
摘要:
The present invention provides a structure and method of forming a butting contact having protective spacers 50A that prevent shorting between a second polysilicon layer 60 and the substrate in a hole 20A in a isolation region 20. The following are provide: a isolation region 20, a first conductive line 30B over portions of the isolation region 20, and an inter-poly insulating layer 40. The protective spacers prevent shorts when the first conductive line 30B is misaligned and exposes a first portion of the isolation region 20 in a butt contact opening. A first photoresist layer 44 having a butt contact photoresist opening 44A over the first doped region 26 and over a first portion of the isolation is formed. The inter-poly insulating layer 40 is etched through the butt contact photoresist opening 44A and etches the first portion of the isolation region forming an isolation hole 20A. In an important step, protective spacers 50A are formed on the sidewalls of the isolation hole 20A. A second conductive layer 60 is formed over an inter-poly insulating layer 40, in the butt contact opening, and over the protective spacers 50A. The protective spacers 50A prevent the second conductive layer 60 from contacting the substrate in the hole 20A.
摘要:
A method to form, in a NMOS area, a shallow trench isolation (STI) having B doped sidewalls regions 44 to reduce the NMOS reverse narrow width effect in narrow active areas 12N (e.g., narrow channel regions
摘要:
A self-aligned structure and method of etching contact holes in the self-aligned structure are described. The dielectric materials, etching methods, and etchants are chosen to provide high selectivity etching. The structure comprises an electrode with a silicon oxy-nitride cap and silicon oxy-nitride spacers on the sidewalls of the electrode and the cap. An etch stop layer of silicon nitride is deposited over the substrate covering the spacers and cap. A layer of silicon oxide is deposited over the etch stop layer. Etching methods and etchants are used which provide a ratio of the etching rate of silicon oxide to the etching rate of silicon nitride or silicon oxy-nitride of at least eight and a ratio of the etching rate of silicon nitride to the etching rate of silicon oxy-nitride of at least two.
摘要:
This is a method of forming an SRAM transistor cell on a well in a doped semiconductor substrate. Form a gate oxide layer and a split gate layer with buried contact regions in the well and openings through the split gate layer and the gate oxide layer to the well. Form an intermediate conductor layer and a hard silicon oxide mask layer and define gate conductors. Form lightly doped source/drain regions, form spacers and source/drain regions in the well. Form a first inter-conductor dielectric layer on the cell. Define a self-aligned contact region in the cell above source/drain regions. Form a second conductor layer over the cell and patterning the second conductor layer to form a via in the self-aligned contact region. Form a second inter-conductor dielectric layer on the cell, a third conductor layer over the cell and patterning the third conductor layer to form a first resistor connected to the self-aligned contact region.
摘要:
An integrated circuit is provided. The integrated circuit includes a substrate, a first FinFET device supported by the substrate, the first FinFET device having a first fin with a non-tiered fin profile, and a second FinFET supported by the substrate, the second FinFET having a second fin with a tiered fin profile.
摘要:
An SRAM array is formed by a plurality of FinFETs formed by fin lines. Each fin line is formed in a substrate, wherein a bottom portion of the fin line is enclosed by an isolation region and an upper portion of the fin line protrudes above a top surface of the isolation region. From a first cross sectional view of the SRAM array, each fin line is of a rectangular shape. From a second cross sectional view of the SRAM array, the terminals of each fin line is of a tapered shape.
摘要:
A static random access memory (SRAM) cell includes a straight fin and a bended fin physically disconnected from the straight fin. The bended fin has a first portion and a second portion parallel to the straight fin. The distance between the first portion of the bended fin and the straight fin is smaller than the distance between the second portion of the bended fin and the straight fin. The SRAM cell includes a pull-down transistor including a portion of a first gate strip, which forms a first and a second sub pull-down transistor with the straight fin and the first portion of the bended fin, respectively. The SRAM cell further includes a pass-gate transistor including a portion of a second gate strip, which forms a first sub pass-gate transistor with the straight fin. The pull-down transistor includes more fins than the pass-gate transistor.
摘要:
Methods and apparatus for providing single finFET and multiple finFET SRAM arrays on a single integrated circuit. A first single port SRAM array of a plurality of first bit cells is described, each first bit cell having a y pitch Y1 and an X pitch X1, the ratio of X1 to Y1 being greater than or equal to 2, each bit cell further having single fin finFET transistors to form a 6T SRAM cell and a first voltage control circuit; and a second single port SRAM array of a plurality of second bit cells, each second bit cell having a y pitch Y2 and an X pitch X2, the ratio of X2 to Y2 being greater than or equal to 3, each of the plurality of second bit cells comprising a 6T SRAM cell wherein the ratio of X2 to X1 is greater than about 1.1.
摘要:
A ROM cell comprises a first first-level contact formed on a first active region of a transistor of a memory cell, a first second-level contact formed on the first first-level contact, wherein the first second-level contact shifts in a first direction with reference to the first first-level contact. The ROM cell further comprises a second first-level contact formed on a second active region of the transistor of the memory cell, wherein the second first-level contact is aligned with the first first-level contact and a second second-level formed on the second first-level contact, wherein the second second-level contact shifts in a second direction with reference to the second first-level contact, and wherein the first direction is opposite to the second direction.