Abstract:
Semiconductor devices are provided such as, ferroelectric transistors and floating gate transistors, that include an epitaxial perovskite/doped strontium titanate structure formed above a surface of a semiconductor substrate. The epitaxial perovskite/doped strontium titanate structure includes a stack of, in any order, a doped strontium titanate and a perovskite type oxide.
Abstract:
A disposable gate structure is formed over the alternating stack of first semiconductor material portions and second semiconductor material portions. The second semiconductor material portions are removed selective to the first semiconductor material portions to form suspended semiconductor nanowires. Isolated gate structures are formed in regions underlying the disposable gate structure by deposition and recessing of a first gate dielectric layer and a first gate conductor layer. After formation of a gate spacer, source regions, and drain regions, raised source and drain regions are formed on the source regions and the drain regions by selective deposition of a semiconductor material. The disposable gate structure is replaced with a replacement gate structure by deposition and patterning of a second gate dielectric layer and a second gate conductor layer. Distortion of the suspended semiconductor nanowires is prevented by the disposable gate structure and the isolated gate structures.
Abstract:
A semiconductor structure has a semiconductor substrate and an nFET and a pFET disposed upon the substrate. The pFET has a semiconductor SiGe channel region formed upon or within a surface of the semiconductor substrate and a gate dielectric having an oxide layer overlying the channel region and a high-k dielectric layer overlying the oxide layer. A gate electrode overlies the gate dielectric and has a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer. The metal layer scavenges oxygen from the substrate (nFET) and SiGe (pFET) interface with the oxide layer resulting in an effective reduction in Tinv and Vt of the pFET, while scaling Tinv and maintaining Vt for the nFET, resulting in the Vt of the pFET becoming closer to the Vt of a similarly constructed nFET with scaled Tinv values.
Abstract:
A gate structure is provided on a channel portion of a semiconductor substrate. The gate structure may include an electrically conducting layer present on a gate dielectric layer, a semiconductor-containing layer present on the electrically conducting layer, a metal semiconductor alloy layer present on the semiconductor-containing layer, and a dielectric capping layer overlaying the metal semiconductor alloy layer. In some embodiments, carbon and/or nitrogen can be present within the semiconductor-containing layer, the metal semiconductor alloy layer or both the semiconductor-containing layer and the metal semiconductor alloy layer. The presence of carbon and/or nitrogen within the semiconductor-containing layer and/or the metal semiconductor alloy layer provides stability to the gate structure. In another embodiment, a layer of carbon and/or nitrogen can be formed between the semiconductor-containing layer and the metal semiconductor alloy layer.
Abstract:
A method of forming a gate structure for a semiconductor device that includes forming a non-stoichiometric high-k gate dielectric layer on a semiconductor substrate, wherein an oxide containing interfacial layer can be present between the non-stoichiometric high-k gate dielectric layer and the semiconductor substrate. At least one gate conductor layer may be formed on the non-stoichiometric high-k gate dielectric layer. The at least one gate conductor layer comprises a boron semiconductor alloy layer. An anneal process is applied, wherein during the anneal process the non-stoichiometric high-k gate dielectric layer removes oxide material from the oxide containing interfacial layer. The oxide containing interfacial layer is thinned by removing the oxide material during the anneal process.
Abstract:
An apparatus includes a wafer annealing tool and a plurality of electrodes coupled to the wafer annealing tool, wherein the electrodes are configured to be in physical contact with a wafer so that, when the wafer is annealed, a negative electrical bias is formed across one or more gate stacks of the wafer.
Abstract:
A surface of a semiconductor-containing dielectric material/oxynitride/nitride is treated with a basic solution in order to provide hydroxyl group termination of the surface. A dielectric metal oxide is subsequently deposited by atomic layer deposition. The hydroxyl group termination provides a uniform surface condition that facilitates nucleation and deposition of the dielectric metal oxide, and reduces interfacial defects between the oxide and the dielectric metal oxide. Further, treatment with the basic solution removes more oxide from a surface of a silicon germanium alloy with a greater atomic concentration of germanium, thereby reducing a differential in the total thickness of the combination of the oxide and the dielectric metal oxide across surfaces with different germanium concentrations.
Abstract:
A method of forming a semiconductor device that includes forming a high-k gate dielectric layer on a semiconductor substrate, wherein an oxide containing interfacial layer can be present between the high-k gate dielectric layer and the semiconductor substrate. A scavenging metal stack may be formed on the high-k gate dielectric layer. An annealing process may be applied to the scavenging metal stack during which the scavenging metal stack removes oxide material from the oxide containing interfacial layer, wherein the oxide containing interfacial layer is thinned by removing of the oxide material. A gate conductor layer is formed on the high-k gate dielectric layer. The gate conductor layer and the high-k gate dielectric layer are then patterned to provide a gate structure. A source region and a drain region are then formed on opposing sides of the gate structure.
Abstract:
A method for fabricating a field effect transistor device includes patterning a fin on substrate, patterning a gate stack over a portion of the fin and a portion of an insulator layer arranged on the substrate, forming a protective barrier over the gate stack, a portion of the fin and a portion of the insulator layer, the protective barrier enveloping the gate stack, depositing a second insulator layer over portions of the fin and the protective barrier, performing a first etching process to selectively remove portions of the second insulator layer to define cavities that expose portions of source and drain regions of the fin without appreciably removing the protective barrier, and depositing a conductive material in the cavities.
Abstract:
An example embodiment disclosed is a process for fabricating a phase change memory cell. The method includes forming a bottom electrode, creating a pore in an insulating layer above the bottom electrode, depositing piezoelectric material in the pore, depositing phase change material in the pore proximate the piezoelectric material, and forming a top electrode over the phase change material. Depositing the piezoelectric material in the pore may include conforming the piezoelectric material to at least one wall defining the pore such that the piezoelectric material is deposited between the phase change material and the wall. The conformal deposition may be achieved by chemical vapor deposition (CVD) or by atomic layer deposition (ALD).