Abstract:
The wafer-level manufacturing method makes possible to manufacture ultrathin optical devices such as opto-electronic modules. A clear encapsulation is applied to an initial wafer including active optical components and a wafer-size substrate, thereon, a photostructurable opaque coating is produced which includes apertures. Then, trenches are produced which extend through the clear encapsulation and establish side walls of intermediate products. Then, an opaque encapsulation is applied to the intermediate products, thus filling the trenches. Cutting through the opaque encapsulation material present in the trenches, singulated optical modules are produced, wherein side walls of the intermediate products are covered by the opaque encapsulation material.
Abstract:
The waveguide structure can be manufactured on wafer-scale and comprises a holding structure and a first and a second waveguides each having a core and two end faces. The holding structure comprises a separation structure being arranged between the first and the second waveguide and provides an optical separation between the first and the second waveguide in a region between the end faces of the first and second waveguides. A method for manufacturing such a waveguide structure with at least one waveguide comprises shaping replication material by means of tool structures to obtain the end faces, hardening the replication material and removing the tool structures from a waveguide structures wafer comprising a plurality of so-obtained waveguides.
Abstract:
The wafer-level manufacturing method makes possible to manufacture ultrathin optical devices such as opto-electronic modules. A clear encapsulation is applied to an initial wafer including active optical components and a wafer-size substrate. Thereon, a photostructurable opaque coating is produced which includes apertures. Then, trenches are produced which extend through the clear encapsulation and establish side walls of intermediate products. Then, an opaque encapsulation is applied to the intermediate products, thus filling the trenches. Cutting through the opaque encapsulation material present in the trenches, singulated optical modules are produced, wherein side walls of the intermediate products are covered by the opaque encapsulation material. The wafer-size substrate can be attached to a rigid carrier wafer during most process steps.
Abstract:
A method for manufacturing one or more optical devices, each comprising a first member and a second member, and a spacer arranged between the first and second members. The method includes manufacturing a spacer wafer including a multitude of the spacers. Manufacturing the spacer wafer includes providing a replication tool having spacer replication sections; bringing the replication tool in contact with a first surface of another wafer; bringing a vacuum sealing chuck into contact with a second surface of the other wafer while the other wafer remains in contact with the replication tool; and injecting a liquid, viscous or plastically deformable material through an inlet of the vacuum sealing chuck so as to substantially fill the spacer replication sections.
Abstract:
The waveguide structure can be manufactured on wafer-scale and comprises a holding structure and a first and a second waveguides each having a core and two end faces. The holding structure comprises a separation structure being arranged between the first and the second waveguide and provides an optical separation between the first and the second waveguide in a region between the end faces of the first and second waveguides. A method for manufacturing such a waveguide structure with at least one waveguide comprises shaping replication material by means of tool structures to obtain the end faces, hardening the replication material and removing the tool structures from a waveguide structures wafer comprising a plurality of so-obtained waveguides.
Abstract:
Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
Abstract:
Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
Abstract:
Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
Abstract:
Disclosed are optical devices and methods of manufacturing optical devices. An optical device can include a substrate; an optical emitter chip affixed to the front surface of the substrate; and an optical sensor chip affixed to the front surface of the substrate. The optical sensor chip can include a main sensor and a reference sensor. The optical device can include an opaque dam separating the main optical sensor and the reference sensor. The optical device can include a first transparent encapsulation block encapsulating the optical emitter chip and the reference optical sensor and a second transparent encapsulation block encapsulating the main optical sensor. The optical device can include an opaque encapsulation material encapsulating the first transparent encapsulation block and the second transparent encapsulation block with a first opening above the main optical sensor and a second opening above the optical emitter chip.
Abstract:
An opto-electronic sensor module (e.g., an optical proximity sensor module) includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member disposed between the substrate and the optics member. The separation member may surround the light emitter and the light detector, and may include a wall portion that extends from the substrate to the optics member and that separates the light emitter and the light detector from one another. The separation member may be composed, for example, a thermosetting polymer material, a UV-curing polymer material or a visible light-curing polymer material, wherein the separation member further includes one or more inorganic fillers and/or dyes that make the separation member substantially non-transparent to light detectable by the light detector and/or emitted by the light emitter.