Abstract:
A process for modifying a surface of a cast polycrystalline silicon sheet to decrease the light reflectance of the cast polycrystalline sheet is disclosed. The cast polycrystalline silicon sheet has at least one structural feature resulting from the cast polycrystalline silicon sheet being directly cast to a thickness less than 1000 micrometers. The process comprises grit blasting the surface of the cast polycrystalline silicon sheet to give an abraded surface on the cast polycrystalline silicon sheet. The process further comprises chemically etching the abraded surface of the cast polycrystalline silicon sheet to give a chemically-etched, abraded surface. The light reflectance of the chemically-etched, abraded surface is decreased in comparison to the light reflectance of the surface of the cast polycrystalline silicon sheet before the step of grit blasting.
Abstract:
A method of forming an optical structure in a continuous manufacturing process includes providing a continuous ribbon of flexible glass substrate (134) having a thickness of no more than 0.3 mm. The continuous ribbon of flexible glass substrate has a first side and a second side separated by a plane formed by the ribbon of flexible glass substrate. A liquid polarizer material (142) is applied on the ribbon of flexible glass substrate at one of the first and second sides as the continuous ribbon of flexible glass substrate moves by a polarizer material application apparatus to form a polarizing layer. A conductive material (150) is applied on the ribbon of flexible glass substrate at one of the first and second sides to form a touch layer for a touch sensitive display.
Abstract:
A textured article that includes a transparent substrate having at least one primary surface and a glass, glass-ceramic or ceramic composition; a micro-textured surface on the primary surface of the substrate, the micro-textured surface comprising a plurality of hillocks; and a nano-structured surface on the micro-textured surface, the nano-structured surface comprising a plurality of nano-sized protrusions or a multilayer coating comprising a plurality of layers having a nano-scale thickness. Further, the hillocks have an average height of about 10 to about 1000 nm and an average longest lateral cross-sectional dimension of about 1 to about 100 μm, and the nano-sized protrusions have an average height of about 10 to about 500 nm and an average longest lateral cross-sectional dimension of about 10 to about 500 nm. The substrate may be chemically strengthened with a compressive stress greater than about 500 MPa and a compressive depth-of-layer greater than about 15 μm.
Abstract:
Described herein are improved dewetting methods and improved patterned articles produced using such methods. The improved methods and articles generally implement continuous ultra-thin metal-containing films or film stacks as the materials to be dewetted. For example, a method can involve the steps of providing a substrate that has a continuous ultra-thin metal-containing film or film stack disposed on a surface thereof, and dewetting at least a portion of the continuous ultra-thin metal-containing film or film stack to produce a plurality of discrete metal-containing dewetted islands on the surface of the substrate.
Abstract:
Glass web including a first glass-web portion (30), a second portion (40), and a splice joint (50) coupling the first glass-web portion to the second portion, wherein the slice joint includes a splice member (60) with at least one gas-permeable attachment portion. In further examples, methods of splicing a first glass-web portion to a second portion include the step of splicing the first glass-web portion to the second portion with a splice member, wherein the step of splicing includes attaching a gas-permeable attachment portion of the splice member to the first glass-web portion.
Abstract:
Described herein are various methods for making textured articles, textured articles that have improved fingerprint resistance, and methods of using the textured articles. The methods generally make use of masks comprising nanostructured metal-containing features to produce textured surfaces that also comprise nanostructured features. These nanostructured features in the textured surfaces can render the surfaces hydrophobic and oleophobic, thereby beneficially providing the articles with improved fingerprint resistance relative to similar or identical articles that lack the texturing.
Abstract:
Methods and apparatus provide for a structure, including: a first glass material layer; and a second material layer bonded to the first glass material layer via bonding material, where the bonding material is formed from one of glass frit material, ceramic frit material, glass ceramic frit material, and metal paste, which has been melted and cured.
Abstract:
Disclosed are AZO films deposited on a transparent substrate by pulse DC using an oxide target with a composition in the range 0.5-2 wt % Al2O3, desirably at temperature above 325° C., resulting in films showing columnar grain structure with columns extending from the top to the bottom of the film, and small lateral grain size (less than 70 nm from substrate to top of film). The film has low resistivity at less than 10 Ohm/square at a thickness less than 400 nm, resistivity is desirably unchanged by annealing at temperatures of up to 450° C.
Abstract translation:公开了通过脉冲直流使用组成为0.5-2重量%Al 2 O 3的氧化物靶,优选温度高于325℃的AZO膜,期望在高于325℃的温度下沉积在透明衬底上,导致膜显示柱状晶粒结构,其中柱从 薄膜的顶部至底部,并且具有小的横向晶粒尺寸(从底部到膜的顶部小于70nm)。 该薄膜的厚度小于400nm时的电阻率低于10欧姆/平方英寸,电阻率最好在不超过450℃的温度下进行退火。
Abstract:
Methods and apparatus provide for a structure, including: a first glass material layer; and a second material layer bonded to the first glass material layer via bonding material, where the bonding material is formed from one of glass frit material, ceramic frit material, glass ceramic frit material, and metal paste, which has been melted and cured.
Abstract:
Disclosed are AZO films deposited on a transparent substrate by pulse DC using an oxide target with a composition in the range 0.5-2 wt % Al2O3, desirably at temperature above 325° C., resulting in films showing columnar grain structure with columns extending from the top to the bottom of the film, and small lateral grain size (less than 70 nm from substrate to top of film). The film has low resistivity at less than 10 Ohm/square at a thickness less than 400 nm, resistivity is desirably unchanged by annealing at temperatures of up to 450° C.