Abstract:
A method is described herein of making a textured glass article, the method includes: etching an initial primary surface of a glass substrate having a thickness with a hydrofluoric acid-free etchant having a pH of about 3 or less; and removing the etchant from the glass substrate, such that the etching is conducted from above ambient temperature to about 100° C. to form a textured region that is defined by a primary surface of the substrate and comprises a sparkle of 2% or less, and the etching comprises a plurality of batch cycles.
Abstract:
Methods for making a glass article include etching the surfaces of the glass article with an etchant solution that includes hydrofluoric acid to produce an etched glass article. The glass article being a high index glass containing transition metal oxides and having an index of refraction greater than or equal to about 1.6 at 589.3 nm wavelength. The surface having surface and subsurface defects. The etching improves a surface strength of the surfaces of the etched glass article by removing or rounding the surface and subsurface defects, and the etching causes deposition of transition metal fluorides. The methods include cleaning the surfaces of the etched glass article with a cleaning solution having a pH of greater than or equal to about 10 to remove transition metal fluorides from the surfaces of the etched glass article.
Abstract:
Methods for producing a nanotextured surface on a substrate include forming nanoparticles from a precursor within a stream of a carrier gas. Methods include heating a surface of a substrate facing the carrier gas. Methods comprise delivering the nanoparticles to the surface of the substrate facing the carrier gas to produce the nanotextured surface.
Abstract:
Described herein are articles and methods of making articles, including a first sheet and a second sheet, wherein the thin sheet and carrier are bonded together using a coating layer, preferably a hydrocarbon polymer coating layer, and associated deposition methods and inert gas treatments that may be applied on either sheet, or both, to control van der Waals, hydrogen and covalent bonding between the sheets. The coating layer bonds the sheets together to prevent formation of a permanent bond at high temperature processing while at the same time maintaining a sufficient bond to prevent delamination during high temperature processing.
Abstract:
Disclosed herein are methods for treating a glass substrate, comprising bringing a surface of the glass substrate into contact with a plasma comprising at least one hydrocarbon for a time sufficient to form a coating on at least a portion of the surface. Also disclosed herein are glass substrates comprising at least one surface, wherein at least a portion of the surface is coated with a layer comprising at least one hydrocarbon, wherein the coated portion of the surface has a contact angle ranging from about 15 degrees to about 95 degrees, and/or a surface energy of less than about 65 mJ/m2.
Abstract:
One or more aspects relate to an article that includes a glass substrate having a first average strain-to-failure; and a crack mitigating layer disposed on a first major surface of the substrate forming a first interface. The article also includes a film disposed on the crack mitigating layer forming a second interface and having a second average strain-to-failure that is less than the first average strain-to-failure. Further, at least one of the first and second interfaces exhibits a moderate adhesion such that at least a portion of the crack mitigating layer experiences one or more of a cohesive failure and an adhesive failure at the interfaces when the article is strained to a strain level between the first average strain-to-failure and the second average strain-to-failure. In addition, the refractive index of the crack mitigating layer is between or the same as the refractive indices of the substrate and the film.
Abstract:
A display article is described herein that includes: a substrate comprising a thickness and a primary surface; and the primary surface having defined thereon a diffractive surface region. The diffractive surface region comprises a plurality of structural features that comprises a plurality of different heights in a multimodal distribution. Further, the substrate exhibits a sparkle of less than 4%, as measured by pixel power deviation (PPD140) at an incident angle of 0° from normal, a distinctness of image (DOI) of less than 80% at an incident angle of 20° from normal, and a transmittance haze of less than 20% from an incident angle of 0° from normal.
Abstract:
Display tiles comprising pixel elements on a first surface of a substrate connected by an electrode, a driver located opposite the first surface, and a connector wrapped around an edge surface of the substrate connecting the driver to the pixel elements. Displays comprised of display tiles and methods of manufacturing display tiles and displays are also disclosed.
Abstract:
Described herein are glass articles and methods of making glass articles, comprising a thin sheet and a carrier, wherein the thin sheet and carrier or bonded together using a coating layer, which is preferably an organosiloxane polymer coating layer, and associated deposition methods and inert gas treatments that may be applied on the thin sheet, the carrier, or both, to control van der Waals, hydrogen and covalent bonding between the thin sheet and the carrier. The coating layer bonds the thin sheet and carrier together to prevent a permanent bond at high temperature processing while at the same time maintaining a sufficient bond to prevent delamination during high temperature processing.
Abstract:
A method of making a display area and a glass tile as well as a display area that includes the glass tile. Prior to assembling the glass tile into the array, an edge treatment is performed on the glass tile, the edge treatment increasing an edge strength of the glass tile, as measured by the four point bend test, to at least about 200 MPa. The edge treatment can, for example, include at least one of plasma jet treatment and protective material application.