Abstract:
A device for joining textile yarns for joining two ends of two textile yarns by decomposition and subsequent re-composition of the twists of the fibers of the ends in order to make up a single yarn, including two counter-rotating components, each provided with at least one joining element and disposed opposite each other defining a joining zone defined by the area between the respective joining elements facing each other and substantially aligned along a work axis.
Abstract:
A wrappable textile sleeve with closure system and method of construction is provided. The sleeve has a wall of interlaced yarn with opposite edges extending in a lengthwise direction along a longitudinal axis between opposite ends. The opposite edges are wrappable into overlapping relation with one another to form a tubular cavity. The wall has a first set of closed loops positioned adjacent one of the opposite edges and a second set of closed loops positioned adjacent the other of the opposite edges. At least one flexible lace is disposed through the closed loops in a zig-zag pattern, thereby extending back-and-forth between the first set of loops and the second set of loops. The flexible lace is slidable through the plurality of loops to facilitate drawing and maintaining the opposite edges in overlapping relation with one another.
Abstract:
A carbon fiber manufacturing method includes joining first and second target fiber bundles with a joining fiber bundle, and carbonizing the joined bundles by feeding them through one or more carbonization furnaces. The joining includes forming an overlap between a first end of the joining fiber bundle and a second end of the first target fiber bundle and jetting a fluid to the overlap to form a first entangled portion, and forming an overlap between a second end of the joining fiber bundle and a first end of the second target fiber bundle and jetting a fluid to the overlap to form a second entangled portion. When the first and second entangled portions each have two or more entangling points with a tensile strength not less than 400 N, the relationship defined by the inequality is satisfied: 40>{L2/(L2−A)}×(S+13), where L2 is a length (mm) of an elongation section inside a first carbonization furnace upstream in a feeding direction of the fiber bundles, A is a maximum distance (mm) between an entangling point in the first entangled portion and an entangling point in the second entangled portion, and S is an elongation (%) of the joined fiber bundles fed through the carbonization furnace.
Abstract:
Methods are provided for forming spliced connections in coverbraided ropes in the form of a sling having at least one eye. The methods include the step of situating a void spacer adjacent to a portion of a core rope. The methods also include coverbraiding the removable void spacer to create a tunnel into which a section of the same coverbraided sheath enclosing a strength member core is able to be positioned in between the strength member core and the coverbraided sheath enclosing the strength member core in the vicinity of the spliced eye's splice braid zone, thereby forming a spliced eye connection.
Abstract:
A method and system are provided for splicing a reserve nose wire to a running nose wire in a facemask production line. Prior to depletion of the running nose wire, a reserve nose wire is brought up to a transport speed in a conveying direction of the running nose wire. At or near a zero relative speed between the running nose wire and the reserve nose wire, a leading end of the reserve nose wire is introduced onto the running nose wire, and the two wires are spliced together. The running nose wire is then cut upstream of the splice location such that the reserve nose wire becomes a new running nose wire in the production line.
Abstract:
A method and associated system are provided for splicing a reserve nose wire to a running nose wire in a facemask production line, wherein the running nose wire is supplied continuously from a supply roll. Prior to depletion of the running nose wire, the supply roll is moved from an operating location to an intermediate location that is further from the production line while continuing to supply the running nose wire from the supply roll. The supply roll is then moved from the intermediate location back towards the production line while decelerating the supply roll to a stop, thereby creating an accumulation of the running wire functionally between the supply roll and the production line. With the supply roll at a stop, the running nose wire is continuously supplied from the accumulation and a leading end of a reserve roll of nose wire is spliced to the running nose wire at a location upstream of the accumulation where the running nose wire is at a standstill. The running nose wire is then cut at a location upstream of the splice such that the reserve nose wire and reserve roll become a new running nose wire and new supply roll in the production line.
Abstract:
A fiber bundle which has a pieced part formed by jetting a pressurized fluid against a fiber-bundle overlap is formed either by directly superposing the ending part of a fiber bundle composed of many fibers on the beginning part of another fiber bundle composed of many fibers or by superposing the end part and the beginning part on a jointing fiber bundle composed of many fibers, whereby the many fibers of the fiber bundles are interlaced with one another to thereby piece up the fiber bundles. The pieced part comprises an opened-fiber part in which the fibers have been opened and interlaced-fiber parts respectively located on both sides thereof, each interlaced-fiber part being composed of a plurality of constituent interlaced parts located apart in the width direction for the fiber bundle.
Abstract:
An adhesive tape for flying splice, having a left and right boundary edge, at least one main carrier and a first layer of self-adhesive on the obverse of the main carrier, the reverse of the main carrier bearing a parting system suitable for effecting an adhesive bond to a substrate that can be parted again in such a way that sticky residues are left neither on the reverse of the main carrier nor on the substrate in the region of the parted bond, the parting system being constructed in the form of a multiply interrupted stripe having a plurality of segments that extends in the longitudinal direction of the adhesive tape, the individual segments having less of an extent in the longitudinal direction of the adhesive tape than the adhesive tape itself, and the parting system being suitable for effecting the parting process without the main carrier being damaged.
Abstract:
A spliced fiber tow (40) having a uniform density along its entire length is provided. The spliced fiber tow is manufactured by rarefying the ends (22, 32) of the two fiber tow segments to be joined, aligning the rarefied regions (26, 36) and then applying pressurized gas to entangle the filaments in the rarefied regions. An apparatus (50) for forming the spliced fiber tow includes a pair of rarefying blades (86, 92) and an entanglement element (58).
Abstract:
A front end portion of a following film is superimposed on a rear end portion of a preceding film to form a superimposed portion, and is joined thereto by a double-sided adhesive tape. The length of the double-sided adhesive tape in a film conveyance direction is shorter than that of the superimposed portion. The double-sided adhesive tape adheres to the rear end portion with leaving a rear space from a rear edge, and to the front end portion with leaving a front space from a front edge. The length of the rear space in the film conveyance direction is a maximum shrinkage of a first area, being a part of the front end portion superimposed on the rear space, or more. Likewise, the length of the front space in the film conveyance direction is a maximum shrinkage of a second area or more.