Abstract:
A yarn producing apparatus produces CNT (carbon nanotube) yarn from CNT fibers while causing the CNT fibers to run. The yarn producing apparatus includes a wind driving mechanism that causes a winding shaft provided with a winding tube to rotate about a winding centerline of the winding shaft to wind the CNT yarn onto the winding tube, a twist driving mechanism that causes a guide to rotate around the winding tube and guide the CNT yarn to the winding tube, to twist the CNT fibers and produce the CNT yarn while causing the CNT fibers, CNT yarn, or both to swirl, and a traverse driving mechanism that causes the guide to reciprocate relative to the winding tube along the winding centerline of the winding shaft to cause the CNT yarn to traverse the winding tube.
Abstract:
Systems include a creel assembly supporting a plurality of spools containing at least one cord having an indeterminate length such that a plurality of cords are supported on the creel assembly. A tensioner assembly operative to tension approximately equal predetermined lengths of the plurality of cords received from the creel assembly. A building mandrel supported for rotation and translation. A head assembly supported in fixed relation to the building mandrel. The head assembly is positioned co-axially such that the building mandrel can pass through an opening in the head assembly during translation. Methods of manufacture are included, as are flexible spring members and gas spring assemblies.
Abstract:
A process for debundling a carbon fiber tow into dispersed chopped carbon fibers suitable for usage in molding composition formulations is provided. A carbon fiber tow is fed into a die having fluid flow openings, through which a fluid impinges upon the side of the tow to expand the tow cross sectional area. The expanded cross sectional area tow extends from the die into the path of a conventional fiber chopping apparatus to form chopped carbon fibers, or through contacting tines of a mechanical debundler. Through adjustment of the relative position of fluid flow openings relative to a die bore through which fiber tow passes, the nature of the fluid impinging on the tow, the shape of the bore, in combinations thereof an improved chopped carbon fiber dispersion is achieved. The chopped carbon fiber obtained is then available to be dispersed in molding composition formulations prior to formulation cure.
Abstract:
Device and method for producing a unidirectional (UD) layer from a predetermined number of filament strands. Device includes a dispenser arrangement structured and arranged for delivering the predetermined number of filament strands, and a storage arrangement, structured and arranged for temporary storage of the predetermined number of filament strands. The storage arrangement includes separate storage parts for each of the predetermined number of filament strands. Device also includes a spreading arrangement and an outlet.
Abstract:
A bobbin includes a reinforcing fiber bundle formed in a wound shape, and the reinforcing fiber bundle is formed of a plurality of filaments. The reinforcing fiber bundle includes a first twist having a first value T1 per unit length (turn/m) at a first distance r1 from a center axis of the bobbin, a second twist having a second value T2 per unit length (turn/m) at a second distance r2 from the center axis of the bobbin, and a third twist having a third value T3 per unit length (turn/m) at a third distance r3 from the center axis of the bobbin; said reinforcing fiber bundle is disposed so that the following relations are concurrently satisfied: |T1/2πr1|≧|T2/2πr2|≧|T3/2πr3| |T1/2πr1|>|T3/2πr3| |T1|≧|T2|≧|T3|≧0.5 where the first distance r1, the second distance r2, and the third distance r3 are different from each other (r1≠r2≠r3).
Abstract:
Two flat fiber bundles of non-twisted filaments are arranged in an overlapped relationship or in a parallel and adjoining relationship, and held by a gripper at two points spaced apart from each other in the filament-extending direction. Compressed air is injected from a nozzle to the overlapped portion of the fiber bundles between the holding points at a plurality of positions arranged in the direction transverse to the filament-extending direction to cause the adjacent filaments to be entangled. The nozzle is moved across the fiber bundles while injecting air. Filaments are thus opened and rotated by the injected air, and thus entangled. A fiber bundle joining apparatus includes support sections and a receiving section provided in a base, a gripper cooperating with the support sections to grip overlapped ends of fiber bundles therebetween, a nozzle, and a regulating member to temporarily hold the fiber bundles and to allow the lower fiber bundle to be slackened.
Abstract:
FOR THE PRODUCTION OF CARBON FILAMENTS OF HIGH TENSILE STRENGTH AND MODULUS OF ELASTICITY, A METHOD AND APPARATUS IS PROVIDED FOR FEEDING A CONTINUOUS THREAD OF FILAMENTARY MATERIAL IN A HELICAL PATH AROUND A ROLLER CAGE WHICH IS ENCLOSED IN A FURNACE FOR CONTINUOUS PYROLYSIS TREATMENT OF THE THREAD.
Abstract:
A filament winding apparatus includes a controller that controls the action of the filament winding apparatus. The controller includes a tension controller that controls a tension adjuster in such a way that an adjusted tension waveform that relates the rotation phase of a liner to the tension of a fiber adjusted by the tension adjuster has a phase opposite to the phase of a temporary tension waveform.
Abstract:
A passive tensioning system is disclosed for composite material that is dispensed by a composite placement machine. A spool is mounted on a spool shaft and material on the spool is pulled from the spool and applied to a surface. The tensioning system has a drag brake on the spool shaft and a drag brake control for the drag brake. A dancer roll is mounted on a linear slide having a spring force and a slide control is provided for the linear slide. A control system continually varies the drag brake control and the slide control to control the tension of the composite material based on the instantaneous operating characteristics of the composite placement machine.
Abstract:
A guiding device for a material to be wound for a winding machine includes at least one blade guiding unit comprising two fiber guiding blades, which are rotationally drivable in opposite directions and are configured for feeding a material to be wound to a carrier of material to be wound of the winding machine, and the at least one blade guiding unit is configured for conveying a material to be wound which is implemented of inorganic fibers.The blade guiding unit comprises at least one fiber guiding blade tip, which has an at least semi-oval exterior geometry, and the blade guiding unit comprises at least one fiber directing element, which is implemented at least partly of an inorganic-fiber compatible material and comprises at least one rounded fiber guiding edge.