Abstract:
A fired ceramic article including a screen printed layer of primer on a portion of the fired ceramic body. The thickness of the primer layer is less than 25 microns. A machine-readable code is laser marked onto the screen printed layer of primer. Methods of marking a ceramic article are also provided.
Abstract:
Methods and apparatus provide for a structure, including: a first glass material layer; and a second material layer bonded to the first glass material layer via bonding material, where the bonding material is formed from one of glass frit material, ceramic frit material, glass ceramic frit material, and metal paste, which has been melted and cured.
Abstract:
Disclosed herein are apparatuses for screen printing on a surface of a three-dimensional substrate comprising a substantially rigid, substantially planar frame having a perimeter defining a region within the perimeter having a given surface area; and a screen attached to the frame and extending across at least a portion of the surface area, wherein the screen comprises a first portion through which a liquid printing medium can pass onto a proximate three-dimensional substrate; and a second portion coated with an emulsion substantially preventing the liquid printing medium from passing through the second portion of the screen, wherein the screen has a fixed tension of less than about 20 N/cm. Methods and systems for screen printing on a surface of a three-dimensional substrate are also disclosed herein.
Abstract:
Disclosed herein are squeegee apparatuses and methods and systems for screen printing on a surface of a substrate comprising the disclosed squeegee apparatus and a framed screen. Also disclosed herein are methods for screen printing a 3D substrate comprising creating a 2D test framed screen. Methods for predicting the distortion of an image printed on a 3D substrate are also disclosed herein.
Abstract:
Methods and apparatus provide for a structure, including: a first glass material layer; and a second material layer bonded to the first glass material layer via bonding material, where the bonding material is formed from one of glass frit material, ceramic frit material, glass ceramic frit material, and metal paste, which has been melted and cured.
Abstract:
Processes and devices by which a brittle material substrate may be edge formed and finished to simultaneously remove corresponding damage remaining on the edges in the areas formed by cutting and separation while imposing a desired edge profile and achieving a desired mechanical edge strength. Processes of the present disclosure may include a chemical and mechanical brush polishing process configured to shape and/or polish a surface of one or more thin substrates. A plurality of substrates may be arranged in a stacked configuration, and engineered interposer devices may be arranged between the stacked substrates. The interposers may provide between the substrates and may direct filament placement during brushing so as to guide material removal on the substrate edges. Substrate edge profile shapes, including symmetric and asymmetric profiles, may be formed by strategic manipulation of interposer properties including dimensions, mechanical features, material properties, and positioning.
Abstract:
Disclosed herein are apparatuses for screen printing on a surface of a three-dimensional substrate comprising a substantially rigid, substantially planar frame having a perimeter defining a region within the perimeter having a given surface area; and a screen attached to the frame and extending across at least a portion of the surface area, wherein the screen comprises a first portion through which a liquid printing medium can pass onto a proximate three-dimensional substrate; and a second portion coated with an emulsion substantially preventing the liquid printing medium from passing through the second portion of the screen, wherein the screen has a fixed tension of less than about 20 N/cm. Methods and systems for screen printing on a surface of a three-dimensional substrate are also disclosed herein.