Abstract:
The present application provides a light emitting chip, a manufacturing method for the same, and a light emitting device, relating to the field of display technology. The light emitting chip includes a substrate and a plurality of light emitting units arranged in an array on the substrate. The light emitting unit includes at least one first electrode disposed on the substrate and a plurality of epitaxial wafers arranged in an array, at least two of the epitaxial wafers have different colors. Several epitaxial wafers in the epitaxial wafers share one of the first electrodes.
Abstract:
A display substrate, a manufacturing method thereof, and a display device. The manufacturing method of a display substrate includes: providing a substrate; and forming, on the substrate, a first thin film transistor including a first active layer and a second thin film transistor including a second active layer. The second active layer includes a central area and doped regions located at two sides of the central area, respectively. Forming a first thin film transistor including a first active layer and a second thin film transistor including a second active layer on the substrate includes forming the first active layer and the doped regions of the second active layer using a single mask.
Abstract:
The present disclosure provides an array substrate, its manufacturing method, and a display device. The method includes steps of forming a passivation layer on a base substrate, and forming a contact layer and a pixel electrode on the base substrate with the passivation layer through a single patterning process. The contact layer is made of an identical transparent conductive material to the pixel electrode.
Abstract:
The present invention provides an array substrate and a manufacturing method thereof and a display device. The manufacturing method comprises: forming a pattern including a pixel electrode and a source of a thin film transistor on a base substrate through a single patterning process, the pixel electrode is provided in a layer under a layer in which the source is located; forming a pattern including a drain, an active layer, a gate insulation layer and a gate of the thin film transistor through a single patterning process, the active layer covers the source and the drain, and is separated from the gate through the gate insulation layer; and forming a pattern including a passivation layer, a common electrode and a gate line through a single patterning process, the common electrode is a slit electrode and separated from the active layer and the pixel electrode through the passivation layer.
Abstract:
A touch organic light emitting diode (OLED) display device, including: a thin film transistor formed on one side of a substrate, a touch signal feedback layer formed on the thin film transistor, a luminous substrate provided on the touch signal feedback layer, and a touch signal receiving layer formed on the other side of the substrate. An anode layer of the luminous substrate is connected to a drain electrode of the thin film transistor. As to the touch-sensitive OLED display device, a touch screen and an OLED display portion are prepared integratedly, so that the weight and thickness of the display itself are greatly reduced, and the production cost is saved. A manufacturing method of the touch-sensitive OLED display device is further disclosed.
Abstract:
The disclosure discloses a thin film transistor, a method for fabricating the same, and a display device so as to avoid a source and a drain from being oxidized while the thin film transistor is being fabricated, to thereby improve the performance of the thin film transistor. The method for fabricating a thin film transistor includes: forming an active layer pattern on a base substrate, and a source-drain metal layer located above the active layer pattern and with a same pattern as the active layer pattern, using one patterning process; forming a first insulation layer above the source-drain metal layer; and patterning the source-drain metal layer and the first insulation layer using one patterning process so that portion of the active layer pattern corresponding to a channel area is exposed to form a source pattern and a drain pattern.
Abstract:
The disclosure discloses a thin film transistor, a method for fabricating the same, and a display device so as to avoid a source and a drain from being oxidized while the thin film transistor is being fabricated, to thereby improve the performance of the thin film transistor. The method for fabricating a thin film transistor includes: forming an active layer pattern on a base substrate, and a source-drain metal layer located above the active layer pattern and with a same pattern as the active layer pattern, using one patterning process; forming a first insulation layer above the source-drain metal layer; and patterning the source-drain metal layer and the first insulation layer using one patterning process so that portion of the active layer pattern corresponding to a channel area is exposed to form a source pattern and a drain pattern.
Abstract:
The present invention has disclosed a touch screen, comprising: a substrate; at least one first electrode formed on the substrate; at least one second electrode formed on the substrate, the first electrode and the second electrode having different extending directions, and there being an intersecting area between a vertical projection of the first electrode on the substrate and a vertical projection of the second electrode on the substrate; and a first protection layer formed at least at the intersecting area between the first electrode and the second electrode; wherein, the substrate is provided with a groove at the intersecting area between the first electrode and the second electrode so as to at least receive therein a portion of the first electrode located within the intersecting area. The present invention has also disclosed a display device and a method for manufacturing the touch screen. The present invention is provided to prevent two electrodes in two different layers from electrically contacting with each other and to ensure the yield of the touch screen to some extent.
Abstract:
The present disclosure discloses an array substrate, comprising a substrate, a plurality of pixel regions on the substrate, and a thin-film transistor formed in each of the pixel regions, each of the pixel regions comprising a pixel electrode region, wherein, the thin-film transistor comprises a gate layer and a source/drain layer formed laminatedly on the substrate; the array substrate further comprises a flat layer and a reflective metal layer formed in sequence on the substrate and covering at least the pixel electrode region and the thin-film transistor; the reflective metal layer is electrically connected to a drain of the thin-film transistor; and at least one of the gate layer and the source/drain layer is formed of a single metal layer. The present disclosure further provides a method for manufacturing the array substrate and a totally reflective type liquid crystal display comprising the array substrate.
Abstract:
An oxide thin-film transistor (TFT) array substrate, a manufacturing method thereof and a display panel are provided. In the manufacturing method, a pattern of a gate insulating layer (13), an oxide active layer (14) and an etch barrier layer (15) is formed on a substrate (10) on which a pattern of a gate line (11) and a gate electrode (12 ) is formed, by one patterning process.