Abstract:
Methods and apparatus for reducing burn-in time of a physical vapor deposition shield, including: sputtering a dielectric target having a first dielectric constant to form a dielectric layer upon an inner surface of a shield, wherein the shield includes an aluminum oxide coating having a second dielectric constant in an amount sufficient to reduce the burn-in time, and wherein the first dielectric constant and second dielectric constant are substantially similar.
Abstract:
Methods for forming a film stack comprising a hardmask layer and etching such hardmask layer to form features in the film stack are provided. The methods described herein facilitate profile and dimension control of features through a proper profile management scheme formed in the film stack. In one or more embodiments, a method for etching a hardmask layer includes forming a hardmask layer on a substrate, where the hardmask layer contains a metal-containing material containing a metal element having an atomic number greater than 28, supplying an etching gas mixture to the substrate, and etching the hardmask layer exposed by a photoresist layer.
Abstract:
A method of depositing a backside film layer on a backside of a substrate includes loading a substrate having one or more films deposited on a front side of the substrate onto a substrate support of a processing chamber, depositing, from the sputter target, a target material on the backside of the substrate to form a backside layer on the backside of the substrate, and applying an RF bias to an electrode disposed within the substrate support while depositing the target material. The front side of the substrate faces the substrate support and is spaced from a top surface of the substrate support, and a backside of the substrate faces a sputter target of the processing chamber.
Abstract:
A method of depositing a contact layer material includes sputtering a target including a metal and a dopant. The contact layer material is conductive and may be used in a transistor device to connect a conductive region, such as a source region or a drain region of metal-oxide semiconductor field effect transistor, to a contact plug. The contact plug is used to connect the source/drain region formed in a semiconducting substrate to metal wiring layers formed above the gate level of a semiconductor device. The resulting contact layer may be a metal silicide including the dopant. In some embodiments, the sputtered metal may be nickel and the dopant may be phosphorous and the resulting contact layer a nickel silicide doped with phosphorous. Embodiments described, in general, can provide reduced contact resistance and thus improved performance in semiconductor devices.
Abstract:
Embodiments of the present disclosure generally relate to methods and apparatus for backside stress engineering of substrates to combat film stresses and bowing issues. In one embodiment, a method of depositing a film layer on a backside of a substrate is provided. The method includes flipping a substrate at a factory interface so that the backside of the substrate is facing up, and transferring the flipped substrate from the factory interface to a physical vapor deposition chamber to deposit a film layer on the backside of the substrate. In another embodiment, an apparatus for depositing a backside film layer on a backside of a substrate, which includes a substrate supporting surface configured to support the substrate at or near the periphery of the substrate supporting surface without contacting an active region on a front side of the substrate.
Abstract:
Methods and apparatus for passivating a target are provided herein. For example, a method includes a) supplying an oxidizing gas into an inner volume of the process chamber; b) igniting the oxidizing gas to form a plasma and oxidize at least one of a target or target material deposited on a process kit disposed in the inner volume of the process chamber; and c) performing a cycle purge comprising: c1) providing air into the process chamber to react with the at least one of the target or target material deposited on the process kit; c2) maintaining a predetermined pressure for a predetermined time within the process chamber to generate a toxic by-product caused by the air reacting with the at least one of the target or target material deposited on the process kit; and c3) exhausting the process chamber to remove the toxic by-product.
Abstract:
Embodiments of methods and apparatus for reducing particle formation in physical vapor deposition (PVD) chambers are provided herein. In some embodiments, a method of reducing particle formation in a PVD chamber includes: performing a plurality of first deposition processes on a corresponding series of substrates disposed on a substrate support in the PVD chamber, wherein the PVD chamber includes a cover ring disposed about the substrate support and having a texturized outer surface, and wherein a silicon nitride (SiN) layer having a first thickness is deposited onto the texturized outer surface during each of the plurality of first deposition processes; and performing a second deposition process on the cover ring between subsets of the plurality of first deposition processes to deposit an amorphous silicon layer having a second thickness onto an underlying silicon nitride (SiN) layer.
Abstract:
Systems and methods for sputtering a layer of refractory metal layer onto a barrier layer disposed on a substrate are disclosed herein. In one or more embodiments, a method of sputter depositing a tungsten structure in an integrated circuit includes: moving a substrate into a plasma processing chamber and onto a substrate support in opposition to a sputter target assembly comprising a tungsten target having no more than ten parts per million of carbon and no more than ten parts per million of oxygen present as impurities; flowing krypton into the plasma processing chamber; and exciting the krypton into a plasma to deposit, by sputtering, a tungsten film layer on a material layer of a substrate supported by the substrate support. In some embodiments, the target assembly further includes a titanium backing plate and an aluminum bonding layer disposed between the titanium backing plate and the tungsten target.
Abstract:
Embodiments of the present disclosure generally relate to methods and apparatus for backside stress engineering of substrates to combat film stresses and bowing issues. In one embodiment, a method of depositing a film layer on a backside of a substrate is provided. The method includes flipping a substrate at a factory interface so that the backside of the substrate is facing up, and transferring the flipped substrate from the factory interface to a physical vapor deposition chamber to deposit a film layer on the backside of the substrate. In another embodiment, an apparatus for depositing a backside film layer on a backside of a substrate, which includes a substrate supporting surface configured to support the substrate at or near the periphery of the substrate supporting surface without contacting an active region on a front side of the substrate.
Abstract:
Embodiments of the present disclosure generally relate to a multilayer stack used as a mask in extreme ultraviolet (EUV) lithography and methods for forming a multilayer stack. In one embodiment, the method includes forming a carbon layer over a film stack, forming a metal rich oxide layer on the carbon layer by a physical vapor deposition (PVD) process, forming a metal oxide photoresist layer on the metal rich oxide layer, and patterning the metal oxide photoresist layer. The metal oxide photoresist layer is different from the metal rich oxide layer and is formed by a process different from the PVD process. The metal rich oxide layer formed by the PVD process improves adhesion of the metal oxide photoresist layer and increases the secondary electrons during EUV lithography, which leads to decreased EUV dose energies.