Abstract:
A method, system and program for determining a position of a feature referenced to a substrate. The method includes measuring a position of the feature, receiving an intended placement of the feature and determining an estimate of a placement error based on knowledge of a relative position of a first reference feature referenced to a first layer on a substrate with respect to a second reference feature referenced to a second layer on a substrate. The updated position may be used to position the layer of the substrate having the feature, or another layer of the substrate, or another layer of another substrate.
Abstract:
A reticle is loaded into a lithographic apparatus. The apparatus performs measurements on the reticle, so as to calculate alignment parameters for transferring the pattern accurately to substrates. Tests are performed to detect possible contamination of the reticle or its support. Either operation proceeds with a warning, or the patterning of substrates is stopped. The test uses may use parameters of the alignment model itself, or different parameters. The integrity parameters may be compared against reference values reflecting historic measurements, so that sudden changes in a parameter are indicative of contamination. Integrity parameters may be calculated from residuals of the alignment model. In an example, height residuals are used to calculate parameters of residual wedge (Rx′) and residual roll (Ryy′). From these, integrity parameters expressed as height deviations are calculated and compared against thresholds.
Abstract:
A method of determining a position of a product feature on a substrate, the method includes: obtaining a plurality of position measurements of one or more product features on a substrate, wherein the measurements are referenced to either a positioning system used in displacing the substrate in between measurements or a plane parallel to the surface of the substrate; and determining a distortion component of the substrate based on the position measurements.
Abstract:
A method, system and program for determining a position of a feature referenced to a substrate. The method includes measuring a position of the feature, receiving an intended placement of the feature and determining an estimate of a placement error based on knowledge of a relative position of a first reference feature referenced to a first layer on a substrate with respect to a second reference feature referenced to a second layer on a substrate. The updated position may be used to position the layer of the substrate having the feature, or another layer of the substrate, or another layer of another substrate.
Abstract:
Disclosed is a method of measuring overlay between upper and lower layers on a substrate using metrology targets formed by a lithographic process. The lithographic process is of a multiple-patterning type whereby first and second distinct populations of structures are formed in a single one of said layers (L1) by respective first and second patterning steps. The metrology target (620) in the single one of said layers comprises a set of structures of which different subsets (642A, 642B) are formed in said first and second patterning steps. An overlay measurement on this target can be used to calculate a combined (average) overlay performance parameter for both of the first and second patterning steps.
Abstract:
A method of determining a characteristic of one or more processes for manufacturing features on a substrate, the method including: obtaining image data of a plurality of features on a least part of at least one region on a substrate; using the image data to obtain measured data of one or more dimensions of each of at least some of the plurality of features; determining a statistical parameter that is dependent on the variation of the measured data of one or more dimensions of each of at least some of the plurality of features; determining a probability of defective manufacture of features in dependence on a determined number of defective features in the image data; and determining the characteristic of the one or more processes to have the probability of defective manufacture of features and the statistical parameter.
Abstract:
A method for determining adjustment to a patterning process. The method includes obtaining a probability density function of a parameter related to a feature of a substrate subject to the patterning process based on measurements of the parameter, determining an asymmetry of the probability density function, and determining an adjustment to the patterning process based on the asymmetry of the probability density function of the parameter so as to reduce a probability of the feature having a parameter value that falls outside a range between threshold values of the parameter.
Abstract:
A lithography tool is calibrated using a calibration substrate having a set of first marks distributed across its surface in a known pattern. The tool is operated to apply a pattern comprising a plurality of second marks at various positions on the substrate, each second mark overlying one of the first marks and being subject to an overlay error dependent on an apparatus-specific deviation. The second marks are applied by multiple exposures while the substrate remains loaded in the tool. An operating parameter of the apparatus is varied between the exposures. An overlay error is measured and used to calculate parameter-specific, apparatus-specific calibration data based on knowledge of the parameter variation used for each exposure.
Abstract:
A reticle is loaded into a lithographic apparatus. The apparatus performs measurements on the reticle, so as to calculate alignment parameters for transferring the pattern accurately to substrates. Tests are performed to detect possible contamination of the reticle or its support. Either operation proceeds with a warning, or the patterning of substrates is stopped. The test uses may use parameters of the alignment model itself, or different parameters. The integrity parameters may be compared against reference values reflecting historic measurements, so that sudden changes in a parameter are indicative of contamination. Integrity parameters may be calculated from residuals of the alignment model. In an example, height residuals are used to calculate parameters of residual wedge (Rx′) and residual roll (Ryy′). From these, integrity parameters expressed as height deviations are calculated and compared against thresholds.