-
公开(公告)号:CN109555849B
公开(公告)日:2022-01-11
申请号:CN201811162349.X
申请日:2018-09-30
Applicant: 西南交通大学 , 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室))
Abstract: 本发明公开了一种电动汽车换挡策略优化及精确跟踪控制方法,包括步骤一:针对具体对象,确定与电动汽车换挡过程的优化控制目标:步骤二:建立换挡过程物理模型;步骤三:设计模型预测控制算法,提高系统鲁棒性,精确跟踪最优控制轨迹。本发明相对于现有技术能够实现对换挡过程持续时间、换挡冲击度、滑磨功等目标进行综合考虑,适用于多档位的换挡过程。能够实现驱动电机和离合器的协同控制,保证换挡品质的同时完成电机转矩的恢复过程。对制定的换挡策略进行跟踪的鲁棒性高,换挡品质稳定,延长了离合器寿命。
-
公开(公告)号:CN109555849A
公开(公告)日:2019-04-02
申请号:CN201811162349.X
申请日:2018-09-30
Applicant: 西南交通大学 , 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室))
CPC classification number: F16H61/0437 , F16H61/0213 , F16H2061/0093 , F16H2061/0223
Abstract: 本发明公开了一种电动汽车换挡策略优化及精确跟踪控制方法,包括步骤一:针对具体对象,确定与电动汽车换挡过程的优化控制目标:步骤二:建立换挡过程物理模型;步骤三:设计模型预测控制算法,提高系统鲁棒性,精确跟踪最优控制轨迹。本发明相对于现有技术能够实现对换挡过程持续时间、换挡冲击度、滑磨功等目标进行综合考虑,适用于多档位的换挡过程。能够实现驱动电机和离合器的协同控制,保证换挡品质的同时完成电机转矩的恢复过程。对制定的换挡策略进行跟踪的鲁棒性高,换挡品质稳定,延长了离合器寿命。
-
公开(公告)号:CN113111510A
公开(公告)日:2021-07-13
申请号:CN202110393503.X
申请日:2021-04-13
Applicant: 西南交通大学
IPC: G06F30/20 , G06F17/13 , G06F119/08
Abstract: 本发明公开了一种计算低温加热工况下锂离子电池内部温度的方法,包括以下步骤:S1、基于一维锂离子单体电池模型,建立在加热工况下的锂离子电池导热微分方程;S2、根据边界条件和初始条件,求解锂离子电池导热微分方程,建立表征温度的格林函数模型;S3、对表征温度的格林函数模型进行求解,建立电芯单元各层的温度变化模型;S4、根据锂离子电池的基本属性、待求解的位置和时刻,基于电芯单元各层的温度变化模型,求解得到对应时刻和位置电池内部的温度;本发明解决了现有电池内部温度计算方法是采用探针或者仿真软件手段来得到电池内部的温度的问题。
-
公开(公告)号:CN110293881A
公开(公告)日:2019-10-01
申请号:CN201910635428.6
申请日:2019-07-15
Applicant: 西南交通大学
Abstract: 本发明公开了一种基于反激式变压器的锂电池双向均衡系统及方法,该系统包括均与电池组连接的电池状态监测模块、信号执行模块、均衡电路模块和保护电路模块均;还包括与电池状态监测模块和信号执行模块连接的信号处理模块,且信号执行模块还与所述均衡电路模块连接。本发明以开路电压作为电池组各种工况下的均衡变量,以工作电压作为电池组充放电阶段的保护阈值,能适应多电池数量的使用环境,能够承受较大电流,能够有针对性地对某个或某几个异常单体电池进行充电或放电的操作,理想状况下均衡的实施不会损耗电池能量。
-
公开(公告)号:CN109239605B
公开(公告)日:2019-09-27
申请号:CN201811292989.2
申请日:2018-11-01
Applicant: 西南交通大学
IPC: G01R31/367 , G01R31/3842
Abstract: 本发明属于电池技术领域,具体的说涉及一种磷酸铁锂动力电池SOC估计方法。本发明的目的,是针对复杂工况下单一的SOC算法不能保证估算精度、收敛速度,提出了一种基于信息融合的磷酸铁锂动力电池SOC估计方法,主要方法为对对电池的工作阶段进行定义:根据离线获得电池的OCV‑SOC关系,用高阶多项式拟合,得到OCV=f(SOC)的函数,对OCV=f(SOC)函数求导得到导数函数,令OCV’等于规定值m(m取1),获得对应的SOC点A、B,其中A点位于靠近SOC值为0的一端;将SOC为0到A的阶段定义为一阶段(初期),SOC为A到B的阶段定义为二阶段(电压稳定区),SOC为B到100%的阶段定义为三阶段(末期),再根据不同的工作阶段进行动力电池SOC的快速,准确估算。
-
公开(公告)号:CN110968968A
公开(公告)日:2020-04-07
申请号:CN201911231468.0
申请日:2019-12-05
Applicant: 西南交通大学
IPC: G06F30/23 , G06F119/08 , G01R31/367
Abstract: 本发明公开了一种基于针刺内部短路锂离子电池的热失控仿真方法,基于电池的电化学反应机理和产热特性原理,通过对锂离子电池进行热电特性试验和建模仿真计算,研究充电条件下电池温度变化特性,然后通过对针刺短路情况下短路内阻的分析,进而根据上述充电条件电池温度变化特性建立热失控针刺短路模型,解决了现有针刺锂离子电池过充的热失控仿真研究方法缺乏对电化学反应机理和产热特性的全面分析,且未考虑不同电池单体的特异性等问题。使用本发明提供的针刺锂离子电池过充的热失控仿真研究方法,相比于现有针刺锂离子电池过充的热失控仿真研究方法,能更有效地分析和预测电池的热行为。
-
公开(公告)号:CN113111510B
公开(公告)日:2022-07-12
申请号:CN202110393503.X
申请日:2021-04-13
Applicant: 西南交通大学
IPC: G06F30/20 , G06F17/13 , G06F119/08
Abstract: 本发明公开了一种计算低温加热工况下锂离子电池内部温度的方法,包括以下步骤:S1、基于一维锂离子单体电池模型,建立在加热工况下的锂离子电池导热微分方程;S2、根据边界条件和初始条件,求解锂离子电池导热微分方程,建立表征温度的格林函数模型;S3、对表征温度的格林函数模型进行求解,建立电芯单元各层的温度变化模型;S4、根据锂离子电池的基本属性、待求解的位置和时刻,基于电芯单元各层的温度变化模型,求解得到对应时刻和位置电池内部的温度;本发明解决了现有电池内部温度计算方法是采用探针或者仿真软件手段来得到电池内部的温度的问题。
-
公开(公告)号:CN109239605A
公开(公告)日:2019-01-18
申请号:CN201811292989.2
申请日:2018-11-01
Applicant: 西南交通大学
IPC: G01R31/367 , G01R31/3842
Abstract: 本发明属于电池技术领域,具体的说涉及一种磷酸铁锂动力电池SOC估计方法。本发明的目的,是针对复杂工况下单一的SOC算法不能保证估算精度、收敛速度,提出了一种基于信息融合的磷酸铁锂动力电池SOC估计方法,主要方法为对对电池的工作阶段进行定义:根据离线获得电池的OCV-SOC关系,用高阶多项式拟合,得到OCV=f(SOC)的函数,对OCV=f(SOC)函数求导得到导数函数,令OCV’等于规定值m(m取1),获得对应的SOC点A、B,其中A点位于靠近SOC值为0的一端;将SOC为0到A的阶段定义为一阶段(初期),SOC为A到B的阶段定义为二阶段(电压稳定区),SOC为B到100%的阶段定义为三阶段(末期),再根据不同的工作阶段进行动力电池SOC的快速,准确估算。
-
-
-
-
-
-
-