-
公开(公告)号:CN112946683A
公开(公告)日:2021-06-11
申请号:CN202110041091.3
申请日:2021-01-13
Applicant: 北京理工大学 , 北京空间飞行器总体设计部
IPC: G01S17/89
Abstract: 本发明提供了一种单线激光雷达的地图构建方法,首先控制飞行器按照指定的自转速度和前进速度进行螺旋前进运动;然后根据实时定位方法确定飞行器在空间中的位置,并实时解算飞行器的姿态以确定激光雷达的扫描方向;根据激光雷达反馈的距离信息实时更新三维点云数据;更新三维地图数据。本发明通过组合空间飞行器的自转和平移构成螺旋前进的运动方式,实现单线激光的扫描操作。不需要为单线激光雷达提供额外的扫描装置,简化了结构,节省了飞行器的内部空间。
-
公开(公告)号:CN112815177A
公开(公告)日:2021-05-18
申请号:CN202110040741.2
申请日:2021-01-13
Applicant: 北京理工大学 , 北京空间飞行器总体设计部
IPC: F16L55/32 , F16L55/40 , B62D57/028 , F16L101/30
Abstract: 本发明提供了一种可适应复杂管道的机器人结构,本发明的机器人结构分三部分,前后两部分是结构相同、镜像布置的支撑驱动模块;中间部分是动力控制模块。模块铰接处设有铰接转动驱动机构,能自由控制动力控制模块和支撑驱动模块的铰接角度;动力控制模块两端设有中心旋转驱动机构,可驱动支撑驱动模块绕中心轴线旋转。本发明主要解决的技术问题是管道机器人在管道内径发生变化、S型管道、T型管道、Y型管道、管道连接处及管道限流环处时能够顺利通过的结构形式,发明了一种新的机器人结构,从而适应管道内各种情况,提高管道机器人的通过性和适应性。
-
公开(公告)号:CN112901902A
公开(公告)日:2021-06-04
申请号:CN202110041081.X
申请日:2021-01-13
Applicant: 北京理工大学 , 北京空间飞行器总体设计部
IPC: F16L55/40 , F16L55/32 , F16L101/30
Abstract: 本发明提供了一种可适应多种管道情况的机器人机构,包括依次连接的第一支撑驱动模块、动力控制模块,以及第二支撑驱动模块;所述第一支撑驱动模块与所述第二支撑驱动模块的结构相同,两者呈镜像布置;所述第一支撑驱动模块通过第一铰接机构与所述动力控制模块连接,所述第二支撑驱动模块通过第二铰接机构与所述动力控制模块连接。本发明不仅可以适应更小内径管道,且可以通过比如S型管道、T型管道、Y型管道、管道限流环、管道变径段、方形管道等复杂管道情况,尤其是方形管道是三组支脚结构形式所无法实现的,针对长锥管道其通过性也有了保障。
-
公开(公告)号:CN114918919B
公开(公告)日:2023-11-28
申请号:CN202210587314.0
申请日:2022-05-25
Applicant: 北京理工大学
IPC: B25J9/16
Abstract: 本发明涉及一种机器人运动技能学习方法及系统,涉及机器人学习领域,该方法包括:获取机器人的当前环境状态参数及所述机器人的当前动作;根据当前环境状态参数及当前动作,采用无模型强化学习方法确定全局价值函数和无模型强化学习策略;根据当前环境状态参数和所述无模型强化学习策略,采用环境动态模型预测所述机器人下一时刻的轨迹,记为初始轨迹;所述环境动态模型为采用K个相同结构的概率神经网络拟合确定的;基于所述全局价值函数,采用模型预测轨迹积分方法优化所述初始轨迹,获得优化后的轨迹;根据优化后的轨迹确定控制所述机器人的运动指令。本发明提高了机器人运动的学习效率。
-
公开(公告)号:CN115718973A
公开(公告)日:2023-02-28
申请号:CN202110972735.0
申请日:2021-08-24
Applicant: 北京理工大学
IPC: G06F30/20 , G06F119/14
Abstract: 本发明提供了一种机器人接触动力学特性的建模与验证方法,将机器人和操作对象固定于装有六维力传感器的工业机器人末端,用工业机器人带动机器人和操作对象整体运动,实现特殊环境下运动的模拟。本发明在工业机器人的每个控制周期中,通过六维力传感器的原始数据和重力补偿得到因接触而在工业机器人末端产生的力/力矩,进而依据末端负载应该具有的运动表现,计算工业机器人的控制器输入量。本发明利用实验过程输出的力和/或力矩,以及运动学数据,实现机器人的接触动力学建模和验证。
-
公开(公告)号:CN115629533A
公开(公告)日:2023-01-20
申请号:CN202211218508.X
申请日:2022-10-06
Applicant: 北京理工大学
IPC: G05B11/42
Abstract: 本发明公开了一种柔性机器人关节谐波减速器高频谐振抑制方法,涉及伺服系统控制技术领域,能够解决谐波减速器驱动的机器人柔性关节控制中由于谐波减速器本身物理结构和装配误差引起的高频谐振和非线性传动力矩的影响而导致机械臂位置跟踪精度和力矩输出精度低的问题。本发明包括如下步骤:第一步,根据机械臂柔性关节的动力学关系构建相应的数学模型。第二步,选取合适的参数,设计谐波干扰观测器对由于谐波减速器柔性引起的高次谐波振动进行在线实时估计。第三步,将第二步得到的谐波扰动估计值与机械臂柔性关节的PD反馈控制器相结合,对系统的二次谐波干扰进行补偿和抑制,形成所述的机械臂柔性关节的谐波减速器高频谐振抑制方法。
-
公开(公告)号:CN112612292B
公开(公告)日:2022-11-18
申请号:CN202011441181.3
申请日:2020-12-08
Applicant: 北京航天自动控制研究所 , 北京理工大学
Inventor: 张磊 , 黄万伟 , 杜立夫 , 李妍妍 , 刘江 , 张惠平 , 贾志强 , 杨广慧 , 张瑞 , 李冬 , 刘晓东 , 闵勇 , 蒋丽敏 , 吴建武 , 赵坤 , 董纯 , 曹煜 , 王光辉 , 李辉 , 唐山 , 朱榕 , 魏小丹
IPC: G05D1/08
Abstract: 本发明公开了一种运载器主动段的高效减载方法,包括运载头部据顶端0.5米至0.8米位置安装栅格舵,所述栅格舵包括栅格舵本体和安装于所述栅格舵本体的四个舵片,栅格舵采用伺服电机驱动,所述栅格舵依靠运载器飞行过程中空气动力产生控制力,所述控制力用于控制姿态减小攻角。高效减载方法是增加头部的栅格舵和尾部的柔性喷管进行联合控制,将增加的栅格舵加入减载回路,由于又加入一种执行机构,控制能力增加,使得运载器更快减小攻角,栅格舵的控制力有利与载荷减小,更高效的减载。
-
公开(公告)号:CN114918919A
公开(公告)日:2022-08-19
申请号:CN202210587314.0
申请日:2022-05-25
Applicant: 北京理工大学
IPC: B25J9/16
Abstract: 本发明涉及一种机器人运动技能学习方法及系统,涉及机器人学习领域,该方法包括:获取机器人的当前环境状态参数及所述机器人的当前动作;根据当前环境状态参数及当前动作,采用无模型强化学习方法确定全局价值函数和无模型强化学习策略;根据当前环境状态参数和所述无模型强化学习策略,采用环境动态模型预测所述机器人下一时刻的轨迹,记为初始轨迹;所述环境动态模型为采用K个相同结构的概率神经网络拟合确定的;基于所述全局价值函数,采用模型预测轨迹积分方法优化所述初始轨迹,获得优化后的轨迹;根据优化后的轨迹确定控制所述机器人的运动指令。本发明提高了机器人运动的学习效率。
-
-
公开(公告)号:CN106003032A
公开(公告)日:2016-10-12
申请号:CN201610421131.6
申请日:2016-06-13
Applicant: 北京理工大学
CPC classification number: B25J9/1605 , B25J9/1633 , B25J9/1679 , G06F17/5009
Abstract: 本发明提供了一种可在空间站舱内稳定攀爬的机器人宇航员,其具有双臂、躯干、机器人宇航员末端执行器、控制系统;所述控制系统将由双臂、躯干、扶手组成的刚性闭链系统解耦为两个开链的机械臂,并对所述开链的机械臂分别采取位置控制、阻抗柔顺控制,从而减小由机器人宇航员末端执行器同时抓握扶手所形成的闭合链内的纷争力,大大提高了机器人宇航员在空间站舱内攀爬的稳定性。
-
-
-
-
-
-
-
-
-