-
公开(公告)号:CN101267016A
公开(公告)日:2008-09-17
申请号:CN200810033601.7
申请日:2008-02-15
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种相变存储器单元器件结构的改进,其特征在于在圆形的下电极上方,通过一定厚度同心圆柱的介质层,实现加热相变材料的热能向下输运的有效控制,一方面很好地保护了构成PCRAM芯片下面的CMOS电路不受较大热能与载流子的冲击,另一方面在减小相变材料与底电极直接接触面积的同时也获得了很好的保温效果,同时,介质层与很小的相变区域可以把下电极封盖住,很容易实现reset过程,同时上电极与相变材料的界面也可用相同同形圆柱的设计方法,这样一来,上下结构与电极对称,使电场均匀,导致的热场均匀,有利于低电压、低功耗与高速存储的实现,且考虑与CMOS工艺的集成。
-
公开(公告)号:CN101226989A
公开(公告)日:2008-07-23
申请号:CN200810032862.7
申请日:2008-01-22
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种用于相变存储器的过渡层,其特征在于所述的过渡层位于相变材料和电极材料之间;过渡层材料的电阻率在10-6欧姆米和1016欧姆米之间,过渡层材料的热导率在0.01W/m·k到30W/m·k之间。过渡层的厚度<10nm,且与相变材料或电极材料间具有黏附力。所述的单层或多层结构的过渡层可有效阻地挡相变材料和电极间的相互扩散,提升电极的加热效率,同时减少了向电极和氧化物的扩散的热量,使更多的热量被用在相变材料加热上。不仅提高了热量的利用率,降低了功耗,而且增加了相变存储器高、低阻间的差异;将相变材料中的最高温度区域向加热电极移动,有效将相变材料的熔化控制在电极周围,提升了器件的可靠性。
-
公开(公告)号:CN100397561C
公开(公告)日:2008-06-25
申请号:CN200410053564.8
申请日:2004-08-06
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种简单易行的纳电子相变存储器器件单元制备方法。本发明通过采用薄膜制备工艺在衬底上制备出构成器件的各层薄膜,采用纳米加工技术制备出小孔,然后在孔内填充电极材料或相变材料,最后把两个电极引出后即可制备出相变存储器的器件单元,器件单元中发生相变区域的尺寸在2-1000nm范围。只制备一个孔时可得到一个器件单元;制备阵列孔时可得到阵列器件单元;阵列器件单元与CMOS管集成后可得到相变存储器器件。本发明的相变存储器器件单元的制备方法只涉及薄膜制备工艺和纳米加工技术,器件结构简单,器件制备方法容易实施,可以很容易制备出纳米尺寸的相变存储器器件或器件单元,实现存储器由微电子向纳电子器件的转变。
-
公开(公告)号:CN100383994C
公开(公告)日:2008-04-23
申请号:CN200510110783.X
申请日:2005-11-25
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L45/00
Abstract: 本发明涉及一种采用硫系化合物纳米材料制备相变存储器单元的方法,具体包括硫系化合物纳米材料的制备方法及其用于制备相变存储器器件单元的方法。通过采用在一维绝缘的纳米材料表面覆盖一层硫系化合物薄膜,制备出硫系化合物纳米材料,进而再采用纳米加工技术,把硫系化合物纳米材料与相变存储器器件单元的电极集成在一起,制备出纳米尺度的相变存储器器件单元。由于纳米结构材料的制备工艺比较成熟且尺寸可以很小,很容易制备出小尺寸的硫系化合物纳米材料。把硫系化合物纳米材料应用到相变存储器器件单元,利用硫系化合物纳米材料截面积可以很小的特征,大大增加电流密度,提高硫系化合物有效相变区域的热效率,降低操作电流,减小功耗。
-
公开(公告)号:CN101101961A
公开(公告)日:2008-01-09
申请号:CN200710043924.X
申请日:2007-07-17
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及相变存储器器件单元的结构及其制备方法,其主要特征在于采用与加热电极和上电极相连的环形相变材料作为存储信息的载体。通过采用合适的薄膜制备技术和纳米加工技术,制备出环形相变材料,通过上下电极引出,并与开关和外围电路集成,制备出纳米尺度的相变存储器器件单元。由于环形相变材料的壁厚可以控制在很小的纳米尺度范围,相变材料的截面积可以很小,大大增加电流密度,提高相变材料有效相变区域的热效率,降低相变存储器器件单元的操作电流,减小功耗。
-
公开(公告)号:CN1905077A
公开(公告)日:2007-01-31
申请号:CN200610028229.1
申请日:2006-06-27
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G11C29/56
Abstract: 本发明涉及一种相变存储器器件单元的测试系统及测试方法,其特征在于所述的测试系统是由控制计算机、脉冲信号发生器、数字信号源、微控探针台和转换连接部件组成;其中,通过通用接口总线使主控计算机与脉冲信号发生器和数字信号源相连;通过控制卡的控制电缆使脉冲信号发生器和数字信号源与微控探针台相连;主控计算机通过控制于控制探针台在脉冲信号发生器和数字信号源之间切换;微控探针台的两个探针分别与相变存储器的上、下电极接触,构成一个存储单元,并通过操作模块进行电流-电压、电压-电流、电阻与写脉高、电阻与写脉宽、电阻与擦脉高、电阻与擦脉宽以及疲劳等七种测试。
-
公开(公告)号:CN1870314A
公开(公告)日:2006-11-29
申请号:CN200610028107.2
申请日:2006-06-23
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L45/00
Abstract: 本发明涉及一种减小相变存储器加热电极的方法,首先通过微纳加工技术或亚微米CMOS标准工艺,在SiO2衬底上制备出较大直径的200-500nm的孔洞,接着利用CVD或PVD技术在该孔洞中填充W、TiN等加热材料,然后进行化学机械抛光,形成柱状加热电极。之后,在柱状加热电极上生长量子点(如Si等),然后将量子点氧化形成绝缘的物质(如SiO2等),这样就减小了柱状加热电极的有效面积,从而提高电流密度。本发明既避免了直接制备100nm以下加热电极的困难,降低了制造成本,更重要的是降低相变存储器的功耗。不仅适用于制备相变存储器的小尺寸纳米加热电极,同样适用于制备其它电子器件特别是纳电子器件所需的纳米电极,具有很大的应用价值。
-
公开(公告)号:CN1722462A
公开(公告)日:2006-01-18
申请号:CN200510026541.2
申请日:2005-06-08
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L29/78 , H01L27/105 , H01L27/24 , H01L21/336 , H01L21/8239
Abstract: 本发明提供一种可逆相变电阻与晶体管合二为一的相变存储器单元及制备方法。主要利用相变材料的半导体特性,通过对相对稳定且易微细加工的可逆相变材料所具有的N型与P型特性制备出微米到纳米量级的小尺寸场效应晶体管,利用纳米加工技术,在晶体管的源、漏上制备10-100nm的引出电极,这样就可实现构成相变存储单元的1R1T(一个可逆相变电阻,一个场效应晶体管)在结构上的一体化与功能上的集成,可有效提高相变存储器的集成度。
-
公开(公告)号:CN104779349B
公开(公告)日:2017-04-19
申请号:CN201510177956.3
申请日:2015-04-15
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L45/00
Abstract: 本发明提供一种相变存储单元及其制作方法,所述相变存储单元包括:镶嵌于衬底中的至少一个下电极;连接于所述下电极上方的刀片状加热电极;连接于所述刀片状加热电极上方的刀片状相变材料结构;连接于所述相变材料结构上方的上电极。本发明的相变存储单元中采用刀片状加热电极及刀片状相变材料结构,所述刀片状加热电极及刀片状相变材料结构相互交叉接触。由于刀片状加热电极和刀片状相变材料结构的厚度尺寸非常小且容易控制,二者交叉接触可实现接触面最小化,达到进一步缩小相变存储单元的相变区域的目的,从而大大降低器件功耗。
-
公开(公告)号:CN105655368A
公开(公告)日:2016-06-08
申请号:CN201610028134.3
申请日:2016-01-15
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L27/24 , H01L29/167 , H01L29/423 , H01L21/82
CPC classification number: H01L27/2409 , H01L21/82 , H01L27/2436 , H01L27/2445 , H01L29/167 , H01L29/4232
Abstract: 本发明提供一种三维堆叠相变存储阵列器件及其制备方法,所述三维堆叠相变存储阵列器件中,无结型晶体管的栅极采用控制栅极的阶梯式引出方式,形成SSL控制端,WL、BL和SSL的交界点处有一个相变存储单元,实现对每一个存储位点的读、写、擦操作。此外,栅极导电材料与绝缘介质层所构成的堆叠结构横跨在相邻的两个钨塞之上,实现了相变材料层的共用,最大程度地降低工艺成本,提升存储密度。本发明的三维堆叠相变存储阵列器件的制备方法与传统CMOS工艺兼容,无结型晶体管和相变单元的形成均为低温工艺,其热处理制程不会对外围电路造成性能漂移,并且无结型晶体管的沟道采用无浓度梯度重掺杂多晶硅材料,有效地避免了离子注入等掺杂工艺引入的额外光罩。
-
-
-
-
-
-
-
-
-