一种液压驱动单元滑模控制的足式机器人驱动方法及系统

    公开(公告)号:CN112180732A

    公开(公告)日:2021-01-05

    申请号:CN202011097225.5

    申请日:2020-10-14

    Applicant: 燕山大学

    Abstract: 本发明涉及一种液压驱动单元滑模控制的足式机器人驱动方法及系统。该方法包括:根据足式机器人的液压阀控伺服系统数学模型,确定系统状态空间表达式及用偏差表示的系统方程;根据系统方程,确定系统滑模面和基于双曲正切函数的复合趋近律;依据最优控制,求解系统滑模面的滑模面参数;根据系统滑模面和复合趋近律,确定系统的滑模控制律;根据系统状态空间表达式,采用含系统已知结构的线性扩张状态观测器,求解滑模控制律中的系统总扰动;确定足式机器人的液压驱动单元的滑模控制律;根据足式机器人的液压驱动单元的滑模控制律驱动足式机器人。本发明可以优化足式机器人的驱动效果。

    带半圆柱形足端的足式机器人腿部运动学修正方法及系统

    公开(公告)号:CN110202584B

    公开(公告)日:2020-10-23

    申请号:CN201910623773.8

    申请日:2019-07-11

    Applicant: 燕山大学

    Abstract: 本发明公开了一种带半圆柱形足端的足式机器人腿部运动学修正方法及系统。本发明首先推导将足端视为点足时的运动学正反解,并对带有半圆柱形足端引起机器人腿部根关节轨迹产生偏移的原因进行分析;考虑到半圆柱足端与地面接触过程中恒相切,本发明将半圆柱足端虚拟为一条恒垂直于地面的杆件,提出带有半圆柱形足端的足式机器人单腿运动学模型。采用本发明修正方法,在机器人机身与接触面成不同角度时均能有效减少根关节轨迹偏移的现象,针对装配有半圆柱形足端的具有任何自由度的腿部结构,都可利用本发明方法设计运动学修正策略,提高机器人的运动控制精度,并使修正过程更加简便。

    液压阀控缸系统动力机构与负载轻量化匹配方法及系统

    公开(公告)号:CN111783247A

    公开(公告)日:2020-10-16

    申请号:CN202010609559.X

    申请日:2020-06-29

    Applicant: 燕山大学

    Abstract: 本发明涉及一种液压阀控缸系统动力机构与负载轻量化匹配方法及系统。该方法包括:确定动力机构不同工况下,液压阀控缸系统的系统有效压力;所述系统有效压力为液压阀控缸系统可为动力机构提供的最大有效压力;所述动力机构工况包括液压缸无杆腔进油工况和液压缸有杆腔进油工况;根据所述液压阀控缸系统的系统有效压力,确定动力机构的最大供给功率和动力机构的速度平方刚度;根据所述动力机构的最大供给功率和速度平方刚度,确定所述动力机构与负载匹配的性能指标;基于所述性能指标,求解满足轻量化液压阀控缸系统的动力机构参数。本发明适用于一般工况的液压阀控缸系统动力机构与负载匹配,亦可实现液压阀控马达/摆缸系统动力机构与负载匹配。

    针对阀控缸力阻抗控制系统的外环阻抗补偿方法及系统

    公开(公告)号:CN110273876B

    公开(公告)日:2020-06-09

    申请号:CN201910588647.3

    申请日:2019-07-02

    Applicant: 燕山大学

    Abstract: 本发明公开了一种针对阀控缸力阻抗控制系统的外环阻抗补偿方法及系统。所述补偿方法包括获取阀控缸力阻抗控制系统的外环阻抗、阀控缸力阻抗控制系统数学模型以及阀控缸伺服缸参数;根据所述外环阻抗确定补偿控制策略;根据所述阀控缸伺服缸参数对所述阀控缸力阻抗控制系统数学模型进行简化分离,确定所述阀控缸力阻抗控制系统的多个传递函数;根据所述补偿控制策略以及多个所述传递函数确定补偿控制器;根据所述补偿控制器对所述阀控缸力阻抗控制系统的外环阻抗进行补偿,确定补偿后的外环阻抗;采用本发明所提供的补偿方法及系统能够提高高集成性阀控缸力阻抗控制系统的控制精度,改善了传统力阻抗控制系统的鲁棒性,且具有很好的工程实用性。

    一种高集成性阀控缸力控系统动态柔顺补偿控制方法

    公开(公告)号:CN107882795B

    公开(公告)日:2019-07-26

    申请号:CN201711021343.6

    申请日:2017-10-26

    Applicant: 燕山大学

    Abstract: 一种高集成性阀控缸力控系统动态柔顺补偿控制方法,该方法内容包括:首先对高集成性阀控缸力控系统进行动态刚度机理分析;力控系统动态刚度包含第一部分固有动态刚度和第二部分等效动态刚度;设计前馈补偿控制器针对第一部分固有动态刚度进行补偿控制;设计另外一种自适应前馈补偿控制器针对第二部分等效动态刚度进行补偿控制;在此基础上,设计参数自整定PID控制器用于在线调整系统前向通道增益,进一步减小力控系统的动态刚度;设计动态柔顺复合补偿控制器Gcf(s)用于增大高集成性阀控缸力控系统的动态刚度。本发明极大地减小了力控制系统的动态刚度,为机器人具有高精度和高鲁棒性要求的外环柔顺控制提供了内环动态柔顺补偿控制方法。

    一种高集成性阀控缸力控系统动态柔顺补偿控制方法

    公开(公告)号:CN107882795A

    公开(公告)日:2018-04-06

    申请号:CN201711021343.6

    申请日:2017-10-26

    Applicant: 燕山大学

    CPC classification number: F15B13/02 F15B13/16 F15B21/001

    Abstract: 一种高集成性阀控缸力控系统动态柔顺补偿控制方法,该方法内容包括:首先对高集成性阀控缸力控系统进行动态刚度机理分析;力控系统动态刚度包含第一部分固有动态刚度和第二部分等效动态刚度;设计前馈补偿控制器 针对第一部分固有动态刚度进行补偿控制;设计另外一种自适应前馈补偿控制器 针对第二部分等效动态刚度进行补偿控制;在此基础上,设计参数自整定PID控制器 用于在线调整系统前向通道增益,进一步减小力控系统的动态刚度;设计动态柔顺复合补偿控制器Gcf(s)用于增大高集成性阀控缸力控系统的动态刚度。本发明极大地减小了力控制系统的动态刚度,为机器人具有高精度和高鲁棒性要求的外环柔顺控制提供了内环动态柔顺补偿控制方法。

    基于纳米摩擦电的自供电位置传感器

    公开(公告)号:CN115235325B

    公开(公告)日:2025-05-16

    申请号:CN202210750057.8

    申请日:2022-06-28

    Applicant: 燕山大学

    Abstract: 本发明提供一种基于纳米摩擦电的自供电位置传感器,其包括发电组件、支撑组件和传导组件,发电组件和支撑组件的第一安装端连接,传导组件和支撑组件的第二安装端连接。发电片沿着触摸层的长度方向均匀分布,支撑条对称分布在底座的两侧;电阻线的两侧安装端分别与左接地板和右接地板固连,第一个左电极和第二个左电极位于电阻线靠近左接地板的一侧,第一个右电极和第二个右电极位于电阻线靠近右接地板的一侧,第一个左电极和第二个左电极分别与第一铜丝导线和第二铜丝导线连接,第一个右电极和第二个右电极分别与第三铜丝导线和第四铜丝导线连接。本发明能通过双接口和单一机制同时识别多种外部刺激,柔性和灵活度高,实际应用价值高。

    基于裂纹传感器的机器人足端多维力检测方法及足端装置

    公开(公告)号:CN115389065B

    公开(公告)日:2025-05-09

    申请号:CN202210917954.3

    申请日:2022-08-01

    Applicant: 燕山大学

    Abstract: 本发明涉及一种基于裂纹传感器的机器人足端多维力检测方法及足端装置,其包括以下步骤,步骤一:在机器人足端安装裂纹传感器,检测受到的外力;步骤二:根据裂纹传感器检测到的外力确定足端受到的作用力;步骤三:计算足端的受力方向,并判断足端是否打滑,调整机器人步态;步骤四:确定机器人足端受到的多维力。本发明通过裂纹传感器将力的变化转换成电压信号的变化,通过对足端受力模型的分析构建了足端多维力检测方法,实现了机器人触地力的实时检测,检测结果准确可靠;本发明提出的足端装置通过改变基座的半径能够与多种结构形式的机器人小腿结构相适应,进行装置整体的快速安装,本装置结构合理,提高检测装置的普适性。

    三通比例减压阀死区及滞环补偿方法

    公开(公告)号:CN115037142B

    公开(公告)日:2025-05-09

    申请号:CN202210575534.1

    申请日:2022-05-24

    Applicant: 燕山大学

    Abstract: 本发明涉及一种三通比例减压阀死区及滞环补偿方法,其包括以下步骤,步骤一:搭建系统平台,获得期望输入激励电流与实际输入激励电流间的关系;步骤二:确定实际输入激励电流与输出压力的关系;步骤三:将获得的实际输入激励电流与输出压力之间的关系进行多项式拟合;步骤四:确定期望输入激励电流与实际输入激励电流的具体关系表达式,补偿减压阀的死区和滞环。本发明通过多项式拟合计算期望输出压力下的期望激励电流,完成了对三通比例减压阀死区和滞环的补偿;能兼顾三通比例减压阀的死区和滞环,针对二者同时进行补偿;与传统硬件补偿方法相比,无需额外添加硬件检测电路,结构更加简单,计算结果更准确。

    载物月球车运动系统及其机电液控制仿真平台搭建方法

    公开(公告)号:CN118744802A

    公开(公告)日:2024-10-08

    申请号:CN202410922621.9

    申请日:2024-07-10

    Applicant: 燕山大学

    Abstract: 本发明属于航天探测技术领域,具体涉及一种载物月球车运动系统,其包括前驱动组件、载物舱、位姿传感器和主驱动组件,主驱动组件包括主支撑杆、摇臂、主轮、第二力传感器、主液压缸筒、第二伺服阀和第二位移传感器,载物舱依靠驱动组件实现倾斜。本发明还公开一种载物月球车运动系统的机电液控制仿真平台搭建方法,包括针对载物舱期望倾斜角度,计算伺服阀控缸期望位移的运动学模块;通过伺服阀控缸位置控制模块,得到伺服阀控缸实际位移;建立多体动力学模块,根据模块及信号流转关系,建立系统的机电液控制仿真平台,并验证仿真准确性。本发明可实现月表崎岖路面的载物舱平稳工作,仿真平台搭建方法有助于设备的设计、测试和优化。

Patent Agency Ranking