-
公开(公告)号:CN115878956A
公开(公告)日:2023-03-31
申请号:CN202211584551.8
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 盖一帆 , 周辉 , 赵雄波 , 路坤锋 , 蒋彭龙 , 李晓敏 , 李超然 , 谢宇嘉 , 赵冠杰 , 林平 , 董文杰 , 吴松龄 , 弥寒光 , 黄鹂 , 吴敏 , 靳蕊溪 , 李杨珺 , 王森 , 李杰 , 杨庆军 , 林玉野
Abstract: 本公开属于专用算法硬件电路技术领域,具体而言涉及一种基于Winograd的相关算法加速器计算系统,包括:张量变换单元,包括基准图变换单元,对基准图张量块进行Winograd变换,得到第一张量块;实时图变换单元,对实时图张量块进行Winograd变换,得到第二张量块;和结果变换单元,对第一矩阵进行Winograd反变换,得到第二矩阵;逐点相乘单元,将所述第一张量块和所述第二张量块进行逐点相乘,得到第三张量块;通道累加单元,将所述第三张量块沿通道方向进行累加,得到第一矩阵;以及偏置累加单元,将所述第二矩阵与偏置矩阵逐点相加,得到过程矩阵。通过上述设置以提高计算速率和计算连续性。
-
公开(公告)号:CN114265696A
公开(公告)日:2022-04-01
申请号:CN202111632969.7
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及一种针对卷积神经网络最大池化层的池化器及池化加速电路,池化器包括第一选择器、第二选择器、比较器、常数寄存器和池化寄存器;比较器的第一输入端输入池化窗口中的特征数据,第二输入端接入第一选择器的输出数据,输出端连接到第二选择器;第一选择器的第一输入端连接常数寄存器,第二输入端连接外部的池化缓存从中读取数据,第三输入端连接池化寄存器输出端;第二选择器的第一输出端作为池化最终结果输出端,第二输出端连接外部的池化缓存向其写入数据,第三输出端连接池化寄存器的输入端。本发明以尽可能小的FPGA资源消耗量,实现常见CNN中最大池化层的高效计算,进而解决将CNN部署到嵌入式设备中遇到的实时性问题和功耗问题。
-
公开(公告)号:CN114358266B
公开(公告)日:2024-12-10
申请号:CN202111683726.6
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
IPC: G06N3/063 , G06N3/0464
Abstract: 本发明涉及一种数据流驱动的卷积神经网络加速器,包括:预处理模块、卷积模块、池化模块和指令分发模块;预处理模块用于加载输入特征执行卷积神经网络的预处理;卷积模块用于加载权重、偏置数据以及输入特征执行卷积层、全连接层或非线性激活层的计算;池化模块用于加载卷积模块的计算结果执行池化层的计算输出;指令分发模块用于对所述预处理模块、卷积模块和池化模块进行工作模式的配置和控制;在指令分发模块的工作模式配置和控制下,根据卷积神经网络结构,将预处理模块、卷积模块和池化模块进行动态的流式结构连接;实现对输入数据的卷积神经网络加速处理。本发明提高CNN加速器的可扩展性,提升系统的整体性能。
-
公开(公告)号:CN117891457A
公开(公告)日:2024-04-16
申请号:CN202311515638.4
申请日:2023-11-15
Applicant: 北京航天自动控制研究所
Abstract: 本申请提供了一种基于QT的通用离线遥测数据解析实现方法和装置,基于QT编写地面解遥测软件,使程序支持跨平台离线运行,通过界面配置和直接修改配置文件的配置方式实现解遥测协议格式快速通用配置,能够处理不同格式要求的二进制原始遥测数据,解析得到可供判读的遥测数据。本申请为不同背景遥测协议文件提供通用遥测数据解析方案,有助于快速迭代遥测方案,提高开发效率。
-
公开(公告)号:CN115905363A
公开(公告)日:2023-04-04
申请号:CN202211555122.8
申请日:2022-12-05
Applicant: 北京航天自动控制研究所
Inventor: 周辉 , 谢宇嘉 , 王晓峰 , 李悦 , 赵雄波 , 吴松龄 , 盖一帆 , 路坤峰 , 李晓敏 , 张隽 , 弭寒光 , 董文杰 , 靳蕊溪 , 吴敏 , 赵冠杰 , 阳徽 , 费亚男 , 赵伟
IPC: G06F16/2458 , G06F16/2455 , G06F16/248
Abstract: 本发明涉及一种数据的实时排序系统,其包括控制单元,输入数据预处理单元,排序模块以及数据缓存与输出单元,所述控制单元用于实现所述输入数据预处理单元和排序模块的控制,所述输入数据预处理单元用于确定所述排序模块是否能够接收新的外部数据并用于判定是否将序列数据输入所述排序模块,所述排序模块用于对输入其内的序列数据进行排序,所述数据缓存与输出单元用于对排序后的数据进行信息缓存和输出。其降低了输入数据从外部存储器读取的次数,降低了数据通讯量与数据存取开销,以尽可能小的FPGA资源消耗量,支持任意规模的数据排序操作,大幅压缩了排序运算的耗时,从而降低了排序操作的运算成本并提升了其效率。
-
公开(公告)号:CN114330658A
公开(公告)日:2022-04-12
申请号:CN202111630592.1
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及一种动态可重构的卷积神经网络多核加速器,包括指令分发模块和与其连接、受其控制的加载模块、路由模块、计算模块和卸载模块;加载模块从外部加载输入特征数据和卷积核数据;路由模块将加载的数据分配给计算模块进行卷积神经网络加速处理;计算模块将结果通过卸载模块输出;加载模块、路由模块、计算模块和卸载模块中包括多路的加载器、路由器、计算核心和卸载器;在卷积神经网络处理过程中,指令分发模块对多路加载器、路由器、计算核心和卸载器进行分组动态重构,在计算核心中加载特征数据和卷积核数据,执行并行卷积神经网络加速处理。本发明利用动态重构实现多个计算核心间的并行,提高卷积神经网络的大动态适应能力。
-
公开(公告)号:CN114327629A
公开(公告)日:2022-04-12
申请号:CN202111682235.X
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及一种基于FPGA的二维多通道卷积硬件加速器,包括:控制单元、偏置缓存、权重缓存、输入特征缓存、卷积缓存、权重预读寄存器组、PE阵列、非线性单元、第二选通器和第三选通器;特征缓存连接PE阵列;权重缓存通过权重预读寄存器组连接PE阵列;偏置缓存与卷积缓存通过第三选通器连接PE阵列,PE阵列输出端通过第二选通器连接卷积缓存和非线性单元;输入特征缓存、偏置缓存和权重缓存加载数据;权重预读寄存器组对权重缓存进行预读寄存;PE阵列写入输入特征、预读寄存的权重数据,偏置数据或卷积中间结果进行卷积运算,将卷积中间结果写入卷积缓存,将卷积最终结果经非线性单元激活后输出。本发明实现对CNN中任意规模卷积层的高效计算。
-
公开(公告)号:CN114330658B
公开(公告)日:2025-03-14
申请号:CN202111630592.1
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
IPC: G06N3/0464 , G06N3/063 , G06N3/08
Abstract: 本发明涉及一种动态可重构的卷积神经网络多核加速器,包括指令分发模块和与其连接、受其控制的加载模块、路由模块、计算模块和卸载模块;加载模块从外部加载输入特征数据和卷积核数据;路由模块将加载的数据分配给计算模块进行卷积神经网络加速处理;计算模块将结果通过卸载模块输出;加载模块、路由模块、计算模块和卸载模块中包括多路的加载器、路由器、计算核心和卸载器;在卷积神经网络处理过程中,指令分发模块对多路加载器、路由器、计算核心和卸载器进行分组动态重构,在计算核心中加载特征数据和卷积核数据,执行并行卷积神经网络加速处理。本发明利用动态重构实现多个计算核心间的并行,提高卷积神经网络的大动态适应能力。
-
公开(公告)号:CN114265696B
公开(公告)日:2024-12-20
申请号:CN202111632969.7
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
IPC: G06F9/50 , G06N3/0464 , G06N3/063 , G06N3/08
Abstract: 本发明涉及一种针对卷积神经网络最大池化层的池化器及池化加速电路,池化器包括第一选择器、第二选择器、比较器、常数寄存器和池化寄存器;比较器的第一输入端输入池化窗口中的特征数据,第二输入端接入第一选择器的输出数据,输出端连接到第二选择器;第一选择器的第一输入端连接常数寄存器,第二输入端连接外部的池化缓存从中读取数据,第三输入端连接池化寄存器输出端;第二选择器的第一输出端作为池化最终结果输出端,第二输出端连接外部的池化缓存向其写入数据,第三输出端连接池化寄存器的输入端。本发明以尽可能小的FPGA资源消耗量,实现常见CNN中最大池化层的高效计算,进而解决将CNN部署到嵌入式设备中遇到的实时性问题和功耗问题。
-
公开(公告)号:CN114327676B
公开(公告)日:2024-07-19
申请号:CN202111632984.1
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
IPC: G06F9/445 , G06F9/50 , G06N3/0464 , G06N3/063 , G06N3/08
Abstract: 本发明涉及一种面向卷积神经网络的高可靠加速器,包括指令分发模块和与其连接、受其控制的加载模块、路由模块、计算模块、冗余控制模块、和卸载模块;在指令分发控制模块的控制下,所述加载模块从外部加载输入特征数据和卷积核数据;路由模块将加载的数据分配给计算模块;所述计算模块中包括多个并列的计算核心,每个计算核心均用于接收分配数据进行卷积神经网络加速处理,输出处理结果;冗余控制模块将所述计算模块输出的多路计算结果输出到所述卸载模块,通过卸载模块将卷积神经网络加速处理结果卸载输出。本发明实现了卷积神经网络的加速处理,并兼顾卷积神经网络的高速处理和高可靠性处理的要求。
-
-
-
-
-
-
-
-
-