-
公开(公告)号:CN115498102A
公开(公告)日:2022-12-20
申请号:CN202211313444.1
申请日:2022-10-25
Applicant: 中国科学院上海微系统与信息技术研究所 , 江苏云涌电子科技股份有限公司
IPC: H01L43/14 , H01L43/06 , H01L43/08 , H01L43/10 , C23C14/04 , C23C14/18 , C23C14/30 , C23C14/35 , C23C28/00 , C30B25/18 , C30B29/02 , C30B33/12
Abstract: 本发明提供一种基于石墨烯的量子电阻芯片的制备方法,以氢气退火处理后的碳化硅为衬底,硅乙烷为气体催化剂,乙炔作为碳源,采用化学气相沉积法外延生长单层石墨烯,可制备均匀性较好的石墨烯结构,制备的量子电阻芯片在6T的磁场强度和4.5K的温度下,霍尔电阻测量准确度达到1.2×10‑8,同时相对不确定度达到3×10‑8,复现性达到3×10‑9,在半年内的磁输运特性具有高度稳定性,该量子电阻芯片具有小型化、集成度高、成本优化、经济效益高、适用性强的优点,可直接将该量子电阻芯片集成于便携式量子电阻标准测量系统,有利于推动精密测量行业的进一步发展。
-
公开(公告)号:CN113889571A
公开(公告)日:2022-01-04
申请号:CN202111106532.X
申请日:2021-09-22
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L45/00
Abstract: 本发明涉及一种高性能相变存储器及其制备方法。该相变存储器包括:基底层,电极层,介质隔离层,底电极层,相变材料层,顶电极层,所述介质隔离层与底电极层之间设有介质缓冲材料层。该相变存储器可以有效避免底电极因氧化造成的性能衰退,确保电极的使用寿命;并且增加了散热面积,提高了器件操作过程中的散热效率,从而降低相变存储介质中的热应力,减小阻值漂移系数,提高了器件可靠性。
-
公开(公告)号:CN112837993A
公开(公告)日:2021-05-25
申请号:CN201911165270.7
申请日:2019-11-25
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02
Abstract: 本发明涉及材料合成技术领域,具体是一种面内呈60°夹角的镍铜(111)孪晶薄膜及其制备方法,所述方法包括:S1、在蓝宝石基片的晶面Al2O3(0001)上沉积金属薄膜,得到依附在所述蓝宝石基片上的前躯镍铜薄膜;S2、将所述前躯镍铜薄膜放置在加热炉内,在氩气和氢气的混合气氛中进行退火处理,得到具有面外方向是(111)择优取向的镍铜孪晶薄膜,所述镍铜孪晶薄膜面内晶畴间呈60°夹角。本发明制备出的镍铜孪晶薄膜具有较强的催化性能,能够极大提高石墨烯的生长速度,降低批量化制备石墨烯单晶晶圆的成本。
-
公开(公告)号:CN104726845B
公开(公告)日:2018-05-01
申请号:CN201510098675.9
申请日:2015-03-05
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: H01L21/02527 , C01B32/182 , C01B2204/06 , H01L21/02389 , H01L21/0243 , H01L21/0259 , H01L21/0262 , H01L21/02658
Abstract: 本发明提供一种h‑BN上石墨烯纳米带的制备方法,包括:1)采用金属催化刻蚀方法于h‑BN上形成具有纳米带状沟槽结构的h‑BN沟槽模板;2)采用化学气相沉积方法于所述h‑BN沟槽模板中的生长石墨烯纳米带。本发明采用CVD方法直接在h‑BN上制备形貌可控的石墨烯纳米带,解决了长期以来石墨烯难以在绝缘衬底上形核生长的关键问题,避免了石墨烯转移及裁剪加工成纳米带等复杂工艺将引入的一系列问题。另外,本发明还具有以下优点:一方面可以提高石墨烯质量实现载流子高迁移率,另一方面通过控制石墨烯形貌如宽度、边缘结构实现调控石墨烯的电子结构,在提高石墨烯性能的同时,简化了石墨烯制备工艺,降低生产成本,以便于石墨烯更广泛地应用于电子器件的制备。
-
公开(公告)号:CN102856184B
公开(公告)日:2016-04-20
申请号:CN201210385176.4
申请日:2012-10-11
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/28 , H01L21/283
Abstract: 本发明提供一种于多层石墨烯表面制备高k栅介质的方法,首先于两层或两层以上的石墨烯表面采用直流磁控溅射法制备金属薄膜,以在所述石墨烯表面引入悬挂键;然后采用化学腐蚀法去除所述金属薄膜,并对所述石墨烯表面进行清洗和干燥;最后利用H2O为氧化剂及金属源反应,采用原子层沉积法于所述石墨烯表面沉积金属氧化物薄膜作为高k栅介质层。本发明具有以下有益效果:本发明通过引入的金属薄膜,可以有效地在石墨烯晶格中引入悬挂键,同时在后续金属溶解工艺中能够很好的保留顶层石墨烯,由于悬挂键的作用,可以通过原子层沉积法制备均匀且超薄的高k栅介质层。
-
公开(公告)号:CN105405965A
公开(公告)日:2016-03-16
申请号:CN201510908225.1
申请日:2015-12-09
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: H01L43/065 , G01R33/0052 , H01L43/14
Abstract: 本发明提供一种高灵敏度石墨烯磁场传感器及其制备方法。涉及半导体技术领域,以干法转移的方法形成h-BN—石墨烯—h-BN的霍尔器件作为磁场传感器的核心结构,可以避免湿法转移工艺及图形化刻蚀、金属沉积工艺等对材料晶格造成的污染与破坏;以h-BN作为衬底及封装层,有利于维持石墨烯载流子迁移率,并保护器件避免吸附空气中的O2、H2O及微粒,以提高器件电学性能;此外石墨烯与金属电极之间采用一维线接触的方式连接,将大大降低器件的接触电阻及功耗。
-
公开(公告)号:CN104726845A
公开(公告)日:2015-06-24
申请号:CN201510098675.9
申请日:2015-03-05
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: H01L21/02527 , C01B32/182 , C01B2204/06 , H01L21/02389 , H01L21/0243 , H01L21/0259 , H01L21/0262 , H01L21/02658
Abstract: 本发明提供一种h-BN上石墨烯纳米带的制备方法,包括:1)采用金属催化刻蚀方法于h-BN上形成具有纳米带状沟槽结构的h-BN沟槽模板;2)采用化学气相沉积方法于所述h-BN沟槽模板中的生长石墨烯纳米带。本发明采用CVD方法直接在h-BN上制备形貌可控的石墨烯纳米带,解决了长期以来石墨烯难以在绝缘衬底上形核生长的关键问题,避免了石墨烯转移及裁剪加工成纳米带等复杂工艺将引入的一系列问题。另外,本发明还具有以下优点:一方面可以提高石墨烯质量实现载流子高迁移率,另一方面通过控制石墨烯形貌如宽度、边缘结构实现调控石墨烯的电子结构,在提高石墨烯性能的同时,简化了石墨烯制备工艺,降低生产成本,以便于石墨烯更广泛地应用于电子器件的制备。
-
公开(公告)号:CN104562195A
公开(公告)日:2015-04-29
申请号:CN201310496579.0
申请日:2013-10-21
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种石墨烯的生长方法,至少包括以下步骤:S1:提供一绝缘衬底,将所述绝缘衬底放置于生长腔室中;S2:将所述绝缘衬底加热到预设温度,并在所述生长腔室中引入含有催化元素的气体;S3:在所述生长腔室中通入碳源,在所述绝缘衬底上生长出石墨烯薄膜。本发明通过引入气态催化元素催化方式,在绝缘衬底上快速生长高质量石墨烯,避免了石墨烯的转移过程,能够提高石墨烯的生产产量,而且大大降低了石墨烯的生长成本,有利于批量生产;本发明生长的石墨烯可应用于新型石墨烯电子器件、石墨烯透明导电膜、透明导电涂层等领域。
-
公开(公告)号:CN103280404A
公开(公告)日:2013-09-04
申请号:CN201310185311.5
申请日:2013-05-17
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/28
Abstract: 本发明提供一种基于竖直石墨烯的场发射电极的图形化制备方法,以耐酸性不同的金属为过渡图形化掩模层,首先利用两步图形化技术,在非金属衬底表面将图形转移到光刻胶上,沉积金属并剥离,得到有图形化金属的衬底,再在留有金属图形的衬底上沉积竖直石墨烯材料,经过酸液腐蚀,去除反应活性较高的金属,以实现薄膜材料的图形化。本发明提供的图形化技术使用于各种非金属衬底尤其是绝缘衬底上二维晶体材料的器件加工工艺。
-
公开(公告)号:CN103176354A
公开(公告)日:2013-06-26
申请号:CN201310090689.7
申请日:2013-03-20
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种绝缘衬底上的电子束曝光图形化方法,所述电子束曝光图形化方法包括以下步骤:1)提供一绝缘衬底;2)在所述绝缘衬底上旋涂电子束光刻胶;3)在所述电子束光刻胶上表面形成金属薄膜;4)进行电子束曝光得到所需光刻图形;5)在得到的光刻图形上沉积金属层,形成金属电极;6)剥离,去除光刻胶及多余金属后得到所需金属图形。本发明采用双层电子束光刻胶进行曝光,显影可以获得有利于后续金属剥离工艺的undercut结构,在双层胶上蒸发不连续的金属薄膜,再进行电子束曝光,能有效地将绝缘衬底表面的电荷导走,形成精确的曝光图形。本发明提供的图形化技术适用于各种绝缘衬底上的微纳器件加工工艺,克服了现有技术中的缺点而具高度产业利用价值。
-
-
-
-
-
-
-
-
-