An adaptor is provided for a shaving cartridge. The adaptor includes a frame extending along a longitudinal axis and a shaving aid coupled with the frame. The adaptor is configured to be reversibly mountable on a shaving cartridge perpendicular to the longitudinal axis.
The present disclosure provides a visual-tactile perception apparatus and a small-sized robot. The apparatus includes a visual perception module, a tactile perception module, a control module, and a signal transmission module. The signal transmission module is separately connected to the visual perception module, the tactile perception module, and the control module. The visual perception module is configured to obtain image information of a surrounding environment of the apparatus; the tactile perception module is configured to obtain tactile information of the surrounding environment of the apparatus; the signal transmission module is configured to transmit the image information and the tactile information to the control module; and the control module is configured to generate a control instruction based on the image information and the tactile information, and transmit the control instruction.
A robot system includes a robot body, a memory, an operation controlling module, a manipulator, and a limit range setting module configured to set a limit range of the corrective manipulation by the manipulator. The operation controlling module executes a given limiting processing when a corrective manipulation is performed beyond the limit range from an operational position based on automatic operation information. The limit range setting module calculates a positional deviation between the operational position based on the automatic operation information before the correction and an operational position based on the corrected operation information, and when the positional deviation is at or below a first threshold, narrows the limit range in the next corrective manipulation by the manipulator.
The invention discloses high-precision mobile robot management and scheduling system, and relates to the technical field of industrial robots, comprising industrial robot, AGV, secondary positioning device and upper computer, wherein the secondary positioning devices are arranged on corresponding workstations of processing machine tool, when the processing machine tool performs processing tasks, the upper computer selects the AGV arranged with industrial robot and navigates the same to the secondary positioning device, and after the secondary positioning device and the chassis of the industrial robot are locked, the industrial robot can assist the processing machine tool in parts machining. The system in the invention perfectly combines the mobile robot and fixed robot, thereby achieving not only flexibility of mobile robot, but also the high precision of the fixed robot.
A modular robot system is capable of being configured to allow a plurality of cube-shaped unit robots to be coupled to one another. The modular robot system has N cube-shaped unit robots (where N is an integer greater than 2), each cube-shaped unit robot including: a cube-shaped housing; a step motor located inside the housing; and a controller located inside the housing to control the step motor, wherein the housing has a mounting groove formed on one surface thereof to mount a rotary body rotating by a rotary shaft of the step motor thereon and connection grooves with the same shape as each other formed on the five surfaces thereof, so that through connectors mounted on the connection grooves, one cube-shaped unit robot is connectable to another cube-shaped unit robot.
An automated transforming tooling system apparatus and method for shuttling a workpiece to and from an industrial operation. The system includes a workstation for complementarily engaging and securing the workpiece, and at least one holder removably secures at least on end effector tool to the workstation. At least one transfer bar is movably positioned with respect to the workstation. At least one automated transforming tooling assembly is connected to the transfer bar and has a plurality of links adjustably connected by motorized joints to automatically position the automated transforming tooling assembly. An automated tool changer is connected to the automated transforming tooling assembly and releasably engages the end effector tool between a disengaged position, wherein the end effector tool is disengaged from the automated tool changer, and an engaged position, wherein the end effector tool is engaged by the automated tool changer.
A worktable system for providing a work surface that is collapsible and portable includes a foldable tabletop that is positionable over a foldable support assembly. The tabletop has a plurality of recesses, and each of a plurality of insertion panels releasably couplable to the tabletop when positioned in one of the plurality of recesses. The insertion panels are removable to make room for a table saw or other tool that is positionable in the recess.
An apparatus, system and method to assist in the painting of doors, specifically for a compact rack for door painting that holds one or more doors by attaching a strip end to the top and bottom edges of one or more doors, then mounting these to end arms on stands that allow the clear and easy rotation of said door(s), followed by the stacking of the doors for drying.
A wire retaining tool includes a C-clamp adapted to be secured to a terminal structure and a wire clamp pivotally connected to the C-clamp such that when the C-clamp is secured to a terminal structure the wire clamp can be adjusted to a desired orientation to hold a wire in a convenient position to be worked on.
A socket adapter for limiting torque delivered from a tool to a socket piece. The socket adapter includes a female receiver that is coupleable to and driven by the tool, and a male drive that is coupled to and driven by the female receiver for transferring torque to the socket piece. The socket adapter further includes a clutch mechanism having a first clutch surface, a second clutch surface that engages the first clutch surface, and an adjustment mechanism for adjusting a clamping force between the first clutch surface and the second clutch surface. The second clutch surface slides relative to the first clutch surface when a reaction torque exerted on the clutch mechanism exceeds a predetermined torque limit.
An automatic adjustable stroke device for a random orbital machine has a housing with a central axis and a wall defining a cavity. A counterbalance shaft assembly is rotatably disposed at least partially within the cavity. A shaft portion of the counterweight shaft assemblies aligned with the central axis. A mounting assembly is disposed at least partially within the cavity. The mounting assembly has a workpiece attachment mechanism. A stroke adjuster couples the counterweight shaft with the mounting assembly. The stroke adjuster enables the mounting assembly to adjust its stroke upon rotation of counterweight shaft. The mounting assembly variably adjusts a stroke radius of the workpiece attachment mechanism with respect to the central axis of the housing. The stroke adjuster has a gear automatically adjusting the mounting assembly stroke.
The invention relates to a cold expansion device (36) for work hardening a through bore (34) in a turbine engine part (32), comprising at least one chuck (38) supporting a burnisher (40) and a means (41) for pushing the chuck (38) in an axial direction, and is characterised in that it comprises at least: —a tubular guide (42) configured to guide the burnisher (40) to the bore (34), —a first magnetic attachment means (51) arranged at a free end (44) of the chuck (38), —the burnisher (40), comprising a work surface (46) and an end (48) comprising second magnetic attachment means (49) complementary to the first magnetic attachment means (51), and in that the axial pushing means (41) is configured to push the burnisher through the bore (34) until it emerges from stud bore.
A tooling base assembly for holding a workpiece is disclosed. In one example, the tooling base assembly includes a base assembly and a clamping assembly that imparts an inward radial force towards a center of the base assembly on the workpiece to securely retain and precisely locate the workpiece to the base assembly.
Apparatus for fastening a component to a carrier component, in particular a body part, includes a base body, wherein the base body includes an actuating element via which the apparatus can be subjected to a force acting in the assembly direction in order to transfer the apparatus from a pre-assembly position into a final assembly position, wherein the assembly direction extends orthogonally to a surface of a carrier component, and wherein the actuating element comprises at least one catching element, which, in the pre-assembly position, engages with a correspondingly formed pre-assembly catching element of the base body and, in the final assembly position, engages with an assembly catching element of the base body, wherein a connection of the catching element to the assembly catching element verifies that the final assembly position is reached, such that the actuating element forms a visual assembly verification device.
A clamping apparatus for clamping shaped parts which are welded along a welding contour by irradiation with a laser beam, includes a first clamping plate used as a holder for a first shaped part, a second clamping plate which is designed to apply a clamping force to the first shaped part and a second shaped part arranged thereon, an outer clamping jaw including a recess and an inner clamping jaw arranged in the recess, which together form the second clamping plate, a passage gap for the laser beam formed in sections between the outer clamping jaw and the inner clamping jaw, and one or more fastening elements which connect the outer clamping jaw with the inner clamping jaw in sections and which bridge the passage gap; and further includes a mirror element arranged such that the laser beam is reflected onto a section of the welding contour.
A multiplicity of wafers are simultaneously cut from an ingot using a structured sawing wire having indentations and protrusions along its length, wherein the structured sawing wire is guided through grooves of two wire guide rolls, and a bottom of each groove, on which the structured wire bears, has a curved groove bottom with a radius of curvature which, for each groove, is equal to or up to 1.5 times as large as the radius of the envelope of the structured wire which the structured wire has in the respective groove.
A power tool chuck includes a body with a central bore extending along an axis and configured to receive a tool bit, a plurality of angled passageways, and a plurality of jaws received in the passageways and moveable between an axially forward and radially inward clamping position and an axially rearward and radially outward retracted position. At least one jaw has a rear end lying in a first plane transverse to the axis. A first key drive member coupled to a tail portion of the body is configured to be engaged by a second key drive member on a power tool output shaft to non-rotationally couple the body to the output shaft. The first key drive has a forward end lying in a second plane transverse to the axis. The second plane is axially forward of the first plane when the jaws are in the retracted position.
Described herein are techniques for improving the grain structure of a metal product by applying ultrasonic energy to a continuously cast metal product at a position downstream from the casting region and allowing the ultrasonic energy to propagate through the metal product to the solidification region. At the solidification region, the ultrasonic energy can interact with the growing metal grains, such as to deagglomerate and disperse nucleating particles and to disrupt and fragment dendrites as they grow, which can promote additional nucleation and result in smaller grain sizes.
Gripper for gripping a thin-walled aerosol can blank, having a base body which is made of a solid material and which has a bore passing through it along a central axis, an inner surface of the bore being provided with a circumferential radial groove extending outwards in the radial direction, and having a rubber-impregnated workpiece which is received in the radial groove, which has a radially inner gripping surface and a radially outer working surface, the working surface, together with mutually opposite axial surfaces of the radial groove and a radially outer circumferential surface of the radial groove, delimiting a fluid working space, wherein an integrally formed circumferential sealing profile is formed on the gripping ring adjacent to the working surface.
A color sorting method for small-grain agricultural products combining an area scanning photoelectric characteristic and a line scanning photoelectric characteristic is provided. The present invention obtains an area scan image of small-grain agricultural product materials on a conveyor belt by using an area scan camera, which can accurately extract area array features of the materials and realize accurate identification of the unqualified materials. At the same time, the present invention can provide key parameters for accurate positioning during free falling of the materials while identifying the unqualified materials by using the area scan image, and can cooperate with the line scan positioning camera and the pneumatic nozzle to achieve high-speed elimination of the unqualified materials.
A lumber use designation system includes a building construction plan that shows the layout, wall thickness, wall height, ceiling angles, etc., of a structure, which are color coded from a series of color codes each corresponding to a preselected, standard board size and length of lumber that should be selected for constructing a particular portion of the structure. The system includes a supply of lumber boards marked with a color code correlating to the color code found on the construction plans. The lumber boards may be imprinted by an ink spray head. A method of installing lumber during the construction of a structure is disclosed.
A paint booth assembly includes a dry filtration system for filtering paint particles from a downdraft of air. The dry filtration system includes at least one filter module disposed in a paint filtration portion of a paint booth for receiving the downdraft of air. The filter module includes a plurality of filter drawers sequentially arranged relative to one another along a flow path of the downdraft of air, with each of the filter drawers slideable relative to a side wall between filtering and cleaning positions. In the filtering position, a disposable filter within the respective filter drawer is disposed within the paint filtration portion for filtering paint particles from the downdraft of process air. In the cleaning position, the respective filter drawer is slid out into an external environment of the paint booth for allowing the disposable filter to be removed and replaced by an operator.
A method for forming a parting line in a coating using an easily peelable coating material comprising (i) attaching a masking tape to a part not to be coated on a boundary between a part to be coated and the part not to be coated along the boundary; (ii) performing a process to improve an adhesiveness with an easily peelable coating material on surfaces of a part in contact with the boundary of the part to be coated and/or a part in contact with the boundary of the masking tape; (iii) applying the easily peelable coating material over surfaces of the part to be coated and the part in contact with the boundary of the masking tape; and (iv) peeling off the masking tape.
An apparatus for separating cell suspension material into centrate and concentrate, includes a single use structure (178, 240, 250) releasably positioned in a cavity in a solid wall rotatable centrifuge bowl (172). The bowl and portions of single use structure rotate about an axis (174). A stationary inlet feed tube (184), a centrate discharge tube (212) and a concentrate discharge tube (230) extend along the axis of the rotating single use structure. A centrate centripetal pump (208) is in fluid connection with the centrate discharge tube. A concentrate centripetal pump (216) is in fluid connection with the concentrate discharge tube. A controller (274) operates responsive to sensors (264, 270) in respective centrate and concentrate discharge lines (262, 268), to control flow rates of a concentrate pump (272) and a centrate pump (266) to produce output flows of cell concentrate and generally cell free centrate.
A coarse crushing device including a rotary cutter portion tearing off a fiber-containing sheet in a first direction, a roller portion pinching the fiber-containing sheet, and a tearing portion provided between the rotary cutter portion and the roller portion, and having a plurality of blades tearing off the fiber-containing sheet in a second direction intersecting the first direction, in which the rotary cutter portion includes a first rotating shaft member rotating about a first axis, a second rotating shaft member rotating reversely to the first rotating shaft member about a second axis parallel to the first axis, a plurality of first rotary cutters provided on the first rotating shaft member and rotating together with the first rotating shaft member, and a plurality of second rotary cutters provided on the second rotating shaft member and rotating together with the second rotating shaft member, and the first rotary cutter and the second rotary cutter are separated from each other.
An improved MFI zeolite having low aluminum occupation at intersection sites characterized by an ortho-xylene to para-xylene uptake ratio of 0.1 to about 0.55. Processes for converting hydrocarbon or oxygenate to a product comprising light olefins and/or aromatics using the improved MFI zeolite as catalyst are also disclosed. Para-xylene in the product may be greater than about 24% of the xylenes.
Disclosed is a method for reducing carbon deposits on a catalyst in recycling HFC-23. The recycling is realized by means of a fluorine-chlorine exchange reaction with HFC-23 and a halogenated hydrocarbon. The catalyst for the fluorine-chlorine exchange reaction comprises a main body catalyst and a precious metal. The precious metal is selected from at least one of Pt, Pd, Ru, Au or Rh, and has an addition amount of 0.01-2 wt %. During the fluorine-chlorine exchange reaction, hydrogen gas is introduced. The invention has advantages of good catalyst stability, long life, etc.
Disclosed herein is a method for selectively reducing, using electrical energy, CO2 to formic acid, a catalyst for use in the method, and an electrochemical reduction system. The method for producing formic acid by electrochemically reducing carbon dioxide of the present invention includes (a) reacting carbon dioxide with a metal complex represented by formula (1), and (b) applying a voltage to a reaction product of the carbon dioxide and the metal complex represented by formula (1):
The invention relates to a method for potting hollow fiber membranes in potting compounds of increased temperature resistance, wherein an isocyanate component with inorganic particles and a polyol component are processed into a potting compound and the hollow fiber membranes are tightly encased by the potting compound in at least one potting zone by the hardening of said potting compound.
The present invention provides a balloon containment device comprising a central portion having a diameter larger than the diameter of the narrowest part of an expanded opening portion of a balloon. An elongate external retainer extends from the central portion toward a proximate end to the balloon opening portion and having a length enabled for placement of the central portion, extending through a neck portion of the balloon opening portion. An elongate internal retainer extends from the central portion, and toward a distal end from the balloon opening portion, and having a length designed for placement inside of the balloon. Wherein when the balloon is inflated, the central portion is held against the neck portion by manipulation of the external retainer.
A hand occupying device and system of use is a lava rock or synthetic equivalent having a plurality of pits disposed about the exterior surface of the lava rock into which a soft and dried latex glue is disposed. A user utilizing a dental pick or similar device may then remove both the dried and pliable latex glue from each individual pit.
In a virtual space of an own apparatus, the movement speed of a movement object is reduced on the basis of a reduction value according to a communication delay time with respect to an opponent apparatus. The reduction value is adjusted such that the movement speed of the movement object is reduced in accordance with the time having elapsed from start of movement of the movement object. The opponent character object is caused to perform an action on the movement object, on the basis of data received from the opponent apparatus.
A customizable recognition system with at least one processor to process the audio/video input to determine a control command for accessibility functions of a computer or gaming application. The customized recognition engine has a classifier for each different input type for the different types of speech or gestures. The classifier stored with a link or indication of a user identifier. The interface is configured to provide the control commands to a computer application, gaming application, or a laptop, or an access technology device.
This application discloses a server and a data processing method, apparatus, and system. In the method, a first server receives control stream information from a terminal, parses the control stream information, starts a game based on a game ID in the control stream information, and intercepts instruction stream information. An Android stimulator is deployed on the first server. The first server sends the instruction stream information to a second server. The second server is in a graphics processing unit GPU resource pool. The second server selects a target GPU from the GPU resource pool to process the instruction stream information, complete image rendering and encoding, and generate video stream information, and finally the second server sends the video stream information to the terminal. The terminal displays the video stream information to a user.
Provided is a method for controlling a wearable device. The method includes acquiring a first time stamp, where the first time stamp is a time at which a user starts climbing; calculating a single-lap climbing altitude of the user according to data of a barometer; acquiring a second time stamp according to a preset single-lap altitude and the single-lap climbing altitude; calculating a climbing time according to the first time stamp and the second time stamp; and calculating a single-lap vertical velocity according to the climbing time and the single-lap altitude.
A let detection system includes a sensor including an accelerometer attached to a tennis net. The sensor is in wireless communication with an umpire device able to send a message to the sensor, wherein the message causes the sensor to calibrate and begin monitoring for a let. The sensor determines a three-dimensional (3D) vector representing the gravity acting on the sensor as a baseline. When the sensor detects vertical acceleration of the net relative to the baseline and the vertical motion is above a preset threshold, the sensor automatically transmits a let notification message to the umpire device.
The Follow Through Fixer is a basketball shooting aid that is worn on a basketball player's shooting arm. It helps a player straighten their follow through, correct their finger spacing, and quicken their release time. The present invention also comes with a unique assembly and design that allows for a player to take the device on and off easily, allowing them to seamlessly transition from practicing with the shooting aid to playing without it.
Embodiments described herein relate to a system which includes a first vertical support, a second vertical support parallel to the first vertical support, a third vertical support parallel to the first vertical support, and a fourth vertical support parallel to the first vertical support, a first, second, third, and fourth elevation couplers releasably attachable proximate an end of the corresponding vertical supports, a first, second, third, and fourth outer horizontal members releasably coupleable to extend between the elevation couplers perpendicular to the vertical supports, and first and second inner horizontal member extending between the outer horizontal members to be oriented substantially perpendicular to the vertical supports and overlap each other to form an elevated grid suitable for a game.
An illuminated rim for a roundnet set is provided. The illuminated rim of the present application is an illuminated circular frame attached to the top of an existing frame of a standard roundnet set. The underside of a connector unit of the illuminated rim snaps onto the existing frame of the standard roundnet set. An optional sensor may be used in connection with the game to detect pressure on the net from, for example, a ball hitting it. Once the sensor is triggered, the LED lights may be programmed to go off. In an embodiment, the device may be programmed so that the light may be used to determine if a valid or invalid shot was executed by a player.
A martial arts training system and method of using the same. The martial arts training system comprises an eyewear component and a user interface. The user interface is operatively connected to the eyewear component and may be integrated into the eyewear component or into a wearable article having proximity sensors. The wearable article may be a belt, gloves, footwear, or a combination thereof. The martial arts training system provides martial arts training programs that are viewable via the eyewear component in real-time or from a library database while allowing an instructor to provide feedback remotely.
A device for training and rehabilitation of a limb is provided. The device provides a board with a plurality of movement tracks to allow for controlled movement of the limb in various directions. Blockers and other controlling structures may be arranged on the device to limit range of motion of the movement of the limb.
A weightlifting system includes a locking mechanism comprising a receiver, a storage that places tension on a flexible member, the flexible member being connected to the storage and to a weight of the weightlifting system, wherein the flexible member extends through the locking mechanism such that when the locking mechanism is locked, a length of the flexible member extending from the locking mechanism is fixed, and a first trigger device connected to a weight of the weightlifting system, wherein the first trigger device is operable by a user to send a first signal to the receiver to unlock the locking mechanism, wherein the locking mechanism is configured to unlock based upon receiving the signal from the first trigger device and upon a movement of the weight of the weightlifting system.
A portable dumbbell includes a handle connection rod, a balance weight seat, a balance weight lock structure and a balance weight, where the handle connection rod includes a handle and a connection rod, the handle being fixedly or detachably mounted on the connection rod, the balance weight seat is fixedly or detachably mounted at two ends of the connection rod, at least one assembly hole is provided on the balance weight seat and used for assembling the balance weight, and the balance weight lock structure is fixedly or detachably mounted at the two ends of the connection rod, is partially accommodated inside the balance weight seat, and is used for controlling the balance weight to be rapidly mounted and locked and unlocked and taken out. According to the portable dumbbell, the balance weight seat and the balance weight lock structure are arranged to match each other.
A weightlifting machine that includes a pulley system and a cable system that attaches to a weight rack frame to allow a user to perform a weightlifting exercise. The pulley system may include a first pulley and a second pulley where the cable system engages each pulley. The cable system may have a first end connected to a grip attachment and a second end attached to a resistance element. The resistance element may include a resistance band, a weight support that holds a weight plate, a set of weight plates, or other type of resistance element. The cable system may extend from the pulley through an opening located one of the frame members that form the frame.
A multi-curtain assembly includes: first and second curtain segments, each having a leading edge and side edge; an edge fastener having first and second fastener portions proximate the side edge of the first and second curtain segments, respectively, the first fastener portion of the first curtain segment being connectable to the second fastener portion of the second curtain segment to produce a seam as the curtain segments are moved to their closed positions; a motor driving one or more of the barrel assemblies; a synchronizing mechanism synchronizing the barrel assemblies. An overlap fastener, arranged proximate edges of the curtain segments in an overlap region, has aligning portions that align as the side edges are brought into alignment by the edge fastener, to mask at least one side of the fastener seam as the fastener portions are connected to each other.
The accuracy charged-particle beam trajectories used for radiation therapy in patients is improved by providing feedback on the beam location within a patient's body or a quality assurance phantom. Particle beams impinge on a patient or phantom in an arrangement designed to deliver radiation dose to a tumor, while avoiding as much normal tissue as can be achieved. By placing fiducial markers in the tumor or phantom that contain specific atomic constituents, a detection signal consisting of atomic fluorescence is produced by the particle beam. An algorithm can combine the detected fluorescence signal with the known location of the fiducial markers to determine the location of the particle beam in the patient or phantom.
A method of modulating neural activity using a combination of electrical and optical stimulation transmitted via a gold nanoparticle covered nanoelectrode is presented. The combination of short-duration green visible light optical pulses with the complementary sub-threshold level electric current pulses are capable of producing action potentials in neurons. Cells were found to have a greater than a 5× survival rate using this hybrid stimulation method as compared to pure plasmonic/optical stimulation. The cell stimulation success rate was 3× greater with hybrid stimulation.
Systems and apparatuses are used to transmit data between external and internal portions of auditory prostheses or other medical devices. The external portion of the auditory prosthesis includes a magnet and an implanted coil that provides stimulation to the device recipient. A shaped shield material can be placed between the external coil and the sound processing hardware to improve efficiency and effectiveness between the external coil and implanted coil. Adverse effects on tuning frequencies can be reduced by disposing the shield material away from the magnet.
Systems and methods for stimulation of neurological tissue generate stimulation trains with temporal patterns of stimulation, in which the interval between electrical pulses (the inter-pulse intervals) changes or varies over time. Compared to conventional continuous, high rate pulse trains having regular (i.e., constant) inter-pulse intervals, the non-regular (i.e., not constant) pulse patterns or trains that embody features of the invention provide a lower average frequency.
Methods and devices to deliver a tactile speech analog to a person's skin providing a silent, invisible, hands-free, eyes-free, and ears-free way to receive and directly comprehend electronic communications. Embodiments include an alternative to hearing aids that will enable people with hearing loss to better understand speech. A device, worn like watch or bracelet, supplements a person's remaining hearing to help identify and disambiguate those sounds he or she can not hear properly. Embodiments for hearing aids and hearing prosthetics are also described.
An unattended approach can increase the reproducibility and safety of the treatment as the chance of over/under treating of a certain area is significantly decreased. On the other hand, unattended treatment of uneven or rugged areas can be challenging in terms of maintaining proper distance or contact with the treated tissue, mostly on areas which tend to differ from patient to patient (e.g. facial area). Delivering energy via a system of active elements embedded in a flexible pad adhesively attached to the skin offers a possible solution. The unattended approach may include delivering of multiple energies to enhance a visual appearance.
The present invention relates to drug delivery systems that cannot be reloaded or reused and further include a passive safety shield system. The drug delivery devices described herein comprise a drug container comprising at least one bellow, wherein the at least one bellow comprises a first surface and an opposing second surface, wherein the first surface is comprised of a first Belleville spring and the opposing second surface is comprised of a second Belleville spring, wherein the second Belleville spring has a higher spring rate than the first Belleville spring; or a drug container extending between distal and proximal ends, and comprises a continuous change in cross section from proximal end to distal end; a needle, wherein the needle is in liquid communication with the drug container; a plunger extending between a proximal end and a distal end, wherein the plunger is in communication with the drug container and where upon axial movement of the punger, the drug container is compressed; a main body extending between a proximal end and a distal end and comprising an inner body and an outer body, wherein the inner body houses the plunger and the drug container and the outer body is capable of sliding over the inner body and extending past the needle; and a spring located between the inner body and the outer body for urging the outer body to slide over the inner body and extend past the needle.
A device for removing a protective shield such as a needle shield is disclosed. The device includes a cup shaped body with a sidewall, a distal bottom wall and a proximal opening. The protective shield is insertable into the cup shaped body through its proximal opening. Fingers are disposed opposite each other in openings in the sidewall. The fingers are flexibly coupled with the sidewall at a proximal end of the finger and can be resiliently biased inwardly to engage the protective shield. Each finger includes at least one projection for engaging the protective shield. The fingers may also include a distal engagement surface for engaging a lip on the protective shield.
A method and system of providing a needle-less injector specifically configured to the needs of a user. The method includes assembling a needle-less injector by positioning an inner housing within the outer housing such that the inner housing is axially movable within the outer housing between a ready position and a firing position. The method further includes receiving a user selection of a delivery spring weight from a plurality of available delivery spring weights. Then a delivery spring having the selected spring weight is placed within the inner housing. The completed needle-less injector having a delivery spring with the selected weigh may then be delivered to the user. In alternative injector configurations, the user may also select one or more of a skin tensioning spring weight or a hammer length along with or instead of the delivery spring weight.
Various embodiments of an antimicrobial insert for a stopcock medical connector are provided. More specifically, the present invention relates to an antimicrobial insert that is seated within at least a portion of the annular bore of the connector's tap, wherein fluid within the annular bore contacts the antimicrobial insert, thereby preventing microbial proliferation within the stopcock medical connector.
A balloon catheter for use with a guidewire includes an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end. An inflatable balloon is connected to the distal end of the shaft, the balloon including a working surface. A radiopaque identifier is provided for identifying the working surface. A receiver adjacent the proximal end of the shaft is adapted for allowing the shaft to move relative to the receiver in at least the longitudinal direction.
Devices, systems, and methods are disclosed that help deliver catheters or other medical devices to locations within a patient's body. The device includes a transporter catheter having a proximal end and a distal end, at least a first balloon located adjacent to the distal end, and at least a second balloon located between the first balloon and the proximal end of the transporter catheter. The first balloon is configured for holding a prosthetic device in place. In another embodiment, the transporter catheter has a third balloon, an orienting balloon, substantially at the tip of the distal end of the transporter catheter.
A patient interface of a respiratory therapy system is provided, and includes: a. a mask body; b. a mask seal secured to the mask body and configured to form a seal with the user's face, at least around the user's mouth; the mask body and mask seal being arranged to define an interior breathing Chamber of the patient interface; and c. an inlet to the breathing chamber configured to receive a flow of breathable gases into the breathing chamber. To assist in allowing a user to speak clearly whilst wearing/using the patient interface, a user actuatable speech valve is provided on the patient interface and is operable to selectively occlude and open a speech flow path from the breathing chamber to atmosphere when the user wishes to speak.
An airway pressure support system (2) includes a housing (4) having an air inlet opening (54), and a filter assembly (50) coupled to a plurality of receiving portions of the housing. The filter assembly is in fluid communication with the air inlet opening. The filter assembly includes a housing portion (62), a first filter media portion (64) attached to the housing portion, and first and second spring members (84, 86) attached to the housing portion, wherein the first and second spring members each have a floating portion and engage the plurality of receiving portions and cause a sealing force to be exerted against the filter assembly.
A heat and moisture exchanger (IO) for tracheostomized or laryn-gectomized patients, having a valve plate and a housing, wherein: the valve plate has a radially surrounding lip, and the housing comprises a valve seat which encloses a distal opening of the housing, the valve seat has a groove for receiving the lip, the valve plate is associated with the distal opening of the housing, and the valve plate can be moved into a closed position in which the lip engages in the groove.
A tracheal sampling device is used to collect or acquire cells from an animal, such as at or near the tracheo-bronchial or larynx of an animal. The device includes a flexible and elongated shaft or stem, and a collection member at a distal end of the device. The collection member could be a swab or other member to best collect mucus. The device is used by inserting the collection end into an animal to position the collection member at or near the cell collection site, which may be in or around the larynx. The collection member is removed after collecting cells, which can be reviewed, tested, or otherwise managed to determine the presence of a disease or other bacteria. The length of the shaft or stem allows for optimal positioning of the swab in a variety of animal species and ages. The device can be disposed after each use.
Bio-ink compositions comprising bio-compatible microgels or nanogels are described. The bio-inks can comprise, for example, micro- or nanogels comprising crosslinked poly(N-isopropylacrylamide) (poly-NIPam). The bio-inks can further comprise viscosity control agents, such as poly(ethylene glycol) (PEG), and/or surface tension agents. Three-dimensional (3D) printing (e.g., piezoelectric printing) of the bio-inks can provide 3D printed materials comprising microgel or nanogel assemblies of the bio-ink compositions. These materials can be used as scaffolds for preparing biological tissues for use, for instance, in regenerative medicine.
Certain embodiments of the present disclosure provide pharmaceutical, unit-dose formulations, suitable for oral administration, that contain from 1% w/w to 20% w/w of a tafamidis-organic acid (such as adipic acid, glutaric acid, or fumaric acid) co-crystal; from 0.25% w/w to 2.5% w/w of an organic acid dissolution enhancer. Such formulations release, within 15 minutes in ¾ strength FeSSIF pH 5.8 or in FaSSIF+0.1% polysorbate 80 pH 6.5, at least 85% of the total tafamidis of the formulation.
The present invention relates to the novel formulation for sustained or delayed release of rohitukine-rich Dysoxylum binectariferum extract/fraction and a process for preparing the same wherein the extract is wet-granulated using excipients i.e. biodegradable polymers and/or non-biodegradable polymers alone or in combination, and the said granules are either filled into a capsule or compressed into a tablet. The said formulation comprising a granulated extract/fraction of rohitukine-rich Dysoxylum binectariferum with polymers has resulted in a sustained release of the extract or fraction over a period of 16-24 hrs. The said formulations are useful in the treatment of inflammatory diseases.
The present invention relates to reporter protein fusion antibodies, transgenic animals expressing the same, and methods of using the reporter protein fusion antibodies.
Methods for preparing highly purified AAV vector formulations are provided. The highly pure AAV formulations described herein are superior for clinical use.
The invention relates to prophylaxis and therapy of cancer. In particular there is provided a protein Tryptophan 2,3-dioxygenase (TDO) or peptide fragments here of that are capable of eliciting anti-cancer immune responses. Specifically, the invention relates to the use of TDO or peptides derived thereof or TDO specific T-cells for treatment of cancer. The invention thus relates to an anti-cancer vaccine which optionally may be used in combination with other immunotherapies and to TDO specific T-cells adoptively transferred or induced in vivo by vaccination as a treatment of cancer. It is an aspect of the invention that the medicaments herein provided may be used in combination with cancer chemotherapy treatment. A further aspect relates to the prophylaxis and therapy of infections by the same means as described above.
The present disclosure discloses compositions comprising a hyaluronidase, devices comprising such compositions, as well as methods and uses employing such compositions and devices to reduce or eliminate a hyaluronic acid-induced blockage of one or more blood vessels supplying an eye of an individual; methods and uses for employing such compositions and devices to reduce or inhibit a vascular occlusion in an eye of an individual; and methods and uses for employing such compositions and devices to reduce or inhibit a hyaluronic acid-induced loss of vision of an individual.
The present invention relates to compositions comprising one or more compounds and/or extracts which induce, promote and/or improve production/release/delivery/excretion of mucin from and/or in the cornea, and methods of using the compositions to treat the eye.
The invention relates to compositions of nicotinamide mononucleotide derivatives and their methods of use. The invention also relates to methods of preparing nicotinamide mononucleotide derivatives. The invention relates to pharmaceutical compositions and nutritional supplements containing a nicotinamide mononucleotide derivative. The invention relates to methods of using nicotinamide mononucleotide derivatives that promote the increase of intracellular levels of nicotinamide adenine dinucleotide (NAD+) in cells and tissues for treating diseases and improving cell and tissue survival.
Compounds, compositions, and methods for treatment and/or prevention of at least one disease, disorder, and/or condition by inhibiting binding of an E-selectin to an E-selectin ligand are disclosed. For example, E-selectin antagonists are described and pharmaceutical compositions comprising at least one of the same.
Pharmaceutical compositions and stable nano-suspensions comprising mifepristone and at least one pharmaceutically acceptable excipient, which exhibit enhanced bioavailability compared to the currently marketed or commercially available formulations. Manufacturing process and methods of use are also provided. The pharmaceutical compositions are used for prevention, treatment or prophylaxis of disorders in human patients in need thereof. Oral pharmaceutical compositions of mifepristone, methods for their administration, processes for thei r production, and use of these compositions are described for the treatment of diseases for which mifepristone is indicated.
Provided herein are compositions and methods for treating pulmonary hypertension. In particular, provided herein are dry powder formulations of fasudil for delivery to the lung.
Disclosed herein is a powder for oral suspension and a reconstituted product thereof comprising highly pure hydrochlorothiazide, which is useful for treating hypertension and edema.
Disclosed are methods of synthesis and/or purification of certain 3,7-diamino-phenothiazin-5-ium compounds (“diaminophenothiazinium compounds”) including Methylthioninium Chloride (MTC) (Methylene Blue), and the resulting high purity characterized by a purity greater than 98%, and very low levels of heavy metals and organic impurities Azure A, B, C and MVB. Also disclosed are methods of treatment of a tauopathy or methemoglobinemia in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of the high-purity diaminophenothiazinium compound.
Methods and products for treating a subject diagnosed with an autism spectrum disorder, an intellectual disability, an anxiety disorder, a mood disorder, a disorder of social interaction, irritability, aggression, self-injurious behavior, hyperactivity, inattention, or Fragile X syndrome or brain neuroinflammation by administering a tablet or liquid or a solid ODT or ODF or SMEDDS containing a ticagrelor or ticagrelor salt or combination with a second agent which may include a magnesium ion containing-compound, a zinc ion containing-compound, a lysine or lysine salt, an arginine or arginine salt, lecithin, or a combination thereof, wherein the ODT or ODF or SMEDDS releases >50% of the ticagrelor or a pharmaceutically acceptable salt thereof and >50% of the second agent within 15 minutes.
The present invention relates to compounds according to Formula (I):
or a stereoisomer, tautomer or pharmaceutically acceptable salt thereof wherein X1, X2, R1, R2, R3 and n are as defined herein. Also described are pharmaceutically acceptable compositions of Formula (I) compounds as well as methods for utilizing the compounds of Formula (I) and the pharmaceutically acceptable compositions of Formula (I) compounds as inhibitors of Mnk as well as therapeutics for the treatment of diseases such as cancer.
Disclosed is a method for preventing or treating atopic dermatitis using TRPV1 receptor antagonist. More specifically, it may be possible to prevent and/or treat the atopic dermatitis without any side effects such as an increase in body temperature, epidermal atrophy, and the like by percutaneously administrating a composition for external use on the skin containing the TRPV1 receptor antagonist.
Compositions and methods are provided for treating HPV infections including pre-malignant and cancers. Compounds that specifically bind to the HPV E6 protein and inactivate the protein are disclosed.
Dietary supplements, nutraceutical compositions, medical foods, animal feeds, and pharmaceutical compositions for treating osteoarthritis and other osteo-articular conditions involving neuropathy and associated symptoms. A synergistic composition containing a high dose range of agmatine and acceptable salts thereof and in combination with other active ingredients having salutary effects in treating osteoarthritis and other osteo-articular conditions involving neuropathy and associated symptoms. The composition prepared with excipients and compatible carriers, including but not limited to, powders, tablets, capsules, controlled release carriers, lozenges and chewable preparations, liquid suspensions, suspensions in an edible supporting matrix or foodstuff and oral rehydration solution to facilitate consumption.
A nutritional supplement contains 50% to 80% by weight of trimethylglycine; 5% to 30% by weight of L-α-glycerophosphorylcholine; 5% to 15% by weight of caffeine; and 5% to 10% by weight of an ingredient selected from the group consisting of an L-amino acid, creatyl-L-leucine, Corynanthe yohimbe bark extract, theacrine, and mixtures thereof. The nutritional supplement is useful for enhancing energy, mental acuity, cognitive performance, and reaction time in a subject in need thereof.
This disclosure provides multifunctional conjugate molecules comprising a target binding component covalently linked to one or more cannabinoids and/or one or more cannabinoid conjugate components. In some embodiments, the target binding component also is covalently linked to one or more active agent components. The disclosed conjugate molecules are designed to deliver therapeutic benefits of each component of the conjugate molecules and can be used to treat cancer and other disorders.
A flow control apparatus comprising a housing capable of receiving a portion of the feeding set, a pumping device configured to receive the feeding set and may produce a fluid flow in the feeding set and deliver fluid to a subject, an ultrasonic sensor may be configured to produce a sensor signal indicative of a condition of the feeding set, and a control circuit in communication with the ultrasonic sensor for receiving the sensor signal from the ultrasonic sensor indicative of the condition of the feeding set. The ultrasonic sensor may comprise a plurality of sensor components which may be configured to emit an ultrasonic signal in a first direction, and in a second direction opposite the first direction through the feeding set.
A device (1) and method for media filtration with a preparation container (2). A chamber (5) containing a dissolvable medium (29) is situated between the container inflow and outflow, and has a filter (22). A mixing arm (6, 7), connected to the inflow, protrudes into the medium in the chamber with at least one mixing nozzle (19, 20), disposed at the free end (17, 18) of the mixing arm for generating a directed jet of solvent. The preparation container has bottom (10) and top (8) parts bracketing the chamber. The filter is a sterile, has on the filtrate side facing the outflow, a circumferential outer edge (23) resting on a circumferential rest edge (37) of the bottom part of the preparation container and is connected fixedly thereto. A sterilised filtrate space (39) is formed between the filtrate side (38) of the filter and the outflow situated in the bottom part.
A system to provide physical therapy in the form of heating, cooling and/or percussion, comprising: a device that contains a battery, a motor, and a switch to turn the device on or off or put the device in heating mode or put the device in cooling mode or put the device in percussion mode; wherein the device contains a motor and a pushing rod that supply the movement that results in percussion of a removable heating/cooling attachment and a removable percussion attachment; wherein the front of the device connects to the removable heating/cooling attachment that contains an electronic component to control heating or cooling and a cooling fan; wherein the removable heating/cooling attachment can be used for heating or cooling; wherein a housing shell for the heating/cooling attachment is made of plastic, foam, or metal, or any combination of plastic, foam and metal; wherein the front part of the heating/cooling attachment is made of metal that has the capability to be in contact with human skin in order to provide either heating or cooling at fixed or adjusted degrees that are optimal for physical therapy and/or blood circulation; wherein the removable heating/cooling attachment can be replaced by the removable percussion attachment that is used for percussion; wherein the removable percussion attachment can be placed on the skin of a user in order to provide percussion at fixed or adjusted speeds that are optimal for physical therapy.
A massage gun includes a gun body, a massage head arranged on the gun body, an auxiliary physiotherapy assembly arranged in the massage head, a main circuit board arranged in the gun body, and a connecting cable electrically connected to the auxiliary physiotherapy assembly and the main circuit board, where the connecting cable is made of a conductive wire resistant to high-speed bending. The connecting cable electrically connected to the auxiliary physiotherapy assembly in the massage head is made of the conductive wire resistant to high-speed bending, which solves the problem that the connecting cable breaks easily when the massage gun performs high-speed piston movement. Because the connecting cable does not break easily, electrical connection can be maintained, thereby prolonging the service life of the massage gun, and reducing use costs.
A personal hygienic system is configured to be portable and to be placed under a patient on a bed or reclined surface. The personal hygienic system comprises an inflatable shower comprising an outer wall that defines an inner space and surrounds a patient. At least one washing fluid can be applied to the patient in the inner space. The outer wall comprises folds discretizing stacked wall segments. The inner space defines a slope declining from an upper end toward a bottom end and a drain portion arranged at the bottom end. The drain portion defines a recess, an aperture located in the recess, a raised bottom lip bounding the recess proximate the bottom end, and at least one drain channel arranged on a side of the drain portion and configured to collect spent washing fluid from one or more side segments and corresponding folds of the inner space.
The invention concerns an implant that comprises an anterior part and a posterior part extending along a longitudinal axis and having respectively an anterior (A) and a posterior pole (E) both located on axis. The anterior and posterior parts extend each radially relative to axis, on either side thereof, the anterior and posterior parts having each two portions located on both sides of axis respectively when viewed in a sagittal plane. Each portion of the anterior part has a radial extension that increases from anterior pole (A) to a point (B, B′) where the anterior part ends and the posterior part begins, each portion of the posterior part having a radial extension decreasing from point (B, B′) to the posterior pole (E). The outer outline of each portion of the anterior part forms a curve having a radius of curvature that is greater at anterior pole (A) than at point (B, B′). The implant is made of one or more materials that have elastic or visco-elastic and cohesive properties in a solid state such that the shear modulus is between 10 Pa and 10 kPa.
Provided herein are methods and devices for grasping and/or tearing trabecular meshwork of an eye of a subject. The devices may include a shaft and a tissue grabber coupled to the shaft. The tissue grabber may include an elongate lower foot configured to be inserted into Schlemm's canal, and a groove configured to grasp a portion of the trabecular meshwork. The methods may include: advancing a tissue grabber to Schlemm's canal of the eye, wherein the tissue gripper comprises a lower foot and a tissue grabbing region; advancing a tip of the lower foot through the trabecular meshwork and into Schlemm's canal; and advancing the lower foot within and relative to Schlemm's canal, wherein as the lower foot is advanced, a portion of the trabecular enters the tissue gripping region, is torn from surrounding tissue, and is collected within the tissue gripping region.
In one embodiments, a phacoemulsification apparatus includes a phacoemulsification probe including a horn, a needle mounted in the horn and configured for insertion into a lens capsule of a human eye, and a piezoelectric actuator configured to vibrate the horn and the needle and having a resonant frequency, a signal generator configured to generate a drive signal to drive a vibration of the piezoelectric actuator, phase detection circuitry configured to measure a phase difference between: a voltage across the piezoelectric actuator, and a current flowing through the piezoelectric actuator in response to the drive signal, and a controller configured to adjust a frequency of the drive signal so as to minimize the measured phase difference, whereby the piezoelectric actuator vibrates at the resonant frequency.
A lid for a medical implant has a first part, a second part and engaging means. The second part is rotatable relative to the first part such that, in use, rotation of the second part relative to the first part causes the engaging means to engage with and attach the lid to the implant.
A closure system for braces, protective wear and similar articles is disclosed. The closure system includes a plurality of opposing lace guide members and a tightening mechanism. The closure system further includes a lace extending through the guide members and coupled to the tightening mechanism. In some embodiments, a quick release apparatus is included to facilitate opening of the closure system. The tightening mechanism in some embodiments includes a control for winding the lace into a housing to place tension on the lace thereby tightening the closure system.
A facet fusion tube assembly includes an elongated tube that defines a working channel to accept tools, instruments or materials for conducting a facet fusion. The tube includes a clip on its outer circumference that is configured to engage the outer surface of an adjacent tool or instrument used to access and engage the pedicle. A centering cap can be mounted at the proximal end of the elongated tube to align and center a working tool, such as a burring tool. An inner removable rod can extend through the tube to prevent soft tissue migration into the tube during insertion, and can be used for bone graft packing once the facet joint or other area of the spine is prepared for fusion. In use, the tube is clipped onto an adjacent instrument or tool to anchor the facet fusion tube assembly in a proper orientation relative to the facet joint.
Delivery devices for delivering a stented prosthesis to a target site are disclosed. Certain disclosed delivery devices include a handle assembly including an actuator, a shaft assembly interconnected to the handle assembly, and are configured to releasably retain the stented prosthesis to the delivery device with at least one elongate tension member. The delivery devices further include a torque shaft that is configured to apply and adjust the amount of tension in the each tension member. For example, the torque shaft can be configured to wind and unwind each elongate tension member around the torque shaft to correspondingly compress and expand the stented prosthesis. The torque shaft can be controlled with an actuator provided in the handle assembly, for example. In some embodiments, the actuator is further configured to axially move the torque shaft.
A replacement heart valve prosthesis for transcatheter repair of a native valve, the replacement heart valve comprises a valve construct mounted to the exterior surface of an expandable frame. The frame comprises an expandable region near the distal end of the frame, and a cusp region near the proximal region comprising a plurality of valve attachment features. The valve construct may be attached to the valve construct at least at the valve attachment features. The replacement heart valve prosthesis of present disclosure may be a more durable and long-lasting valve that has added benefits by placing valve tissue between the expandable frame and native cardiac tissue.
The present technology is a prosthetic heart valve device, and related systems and methods, for treating a native valve of a human heart having a native annulus and native leaflets. One embodiment comprises a valve support, a prosthetic valve assembly within the valve support, and an anchoring member having an upstream portion and a downstream portion. The device further includes an extension member coupled to the fixation frame and extending radially outward therefrom. The extension member includes a plurality of wires, at least a portion of which include an inner core surrounded by an outer material. The wires include a plurality of recesses extending through at least a portion of the thickness of the outer material, and a therapeutic agent in the recesses for delivery to the anatomy when the prosthetic heart valve device is positioned at a native annulus.
The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
A comfortable single-piece male incontinence control device (100) permitting conscious micturition without adjustment or removal of the device (100). The device having a continuous loop of an elastic compression band (110) configured and arranged to securely encircle a flaccid penis P without inflicting penile ischemia, and a bump (120) on the elastic compression band (110) projecting inward into the lumen (119) defined by the band (110) for pressing against and constricting the urethra U of a wearer W.
The present disclosure relates to assembling elastic laminates that may be used to make absorbent article components. Methods herein may include an anvil adapted to rotate about an axis of rotation, wherein first and second spreader mechanisms adjacent the anvil roll are axially and angularly displaced from each other with respect to the axis of rotation. During the assembly process, a substrate may be advanced in a machine direction onto the rotating anvil. The first spreader mechanism stretches a first elastic material in the cross direction, and the second spreader mechanism stretches a second elastic material in the cross direction. The stretched first and second elastic materials advance from the spreader mechanisms and onto the substrate on the anvil roll. The combined and elastic materials may then be ultrasonically bonded together on the anvil to form at least one elastic laminate.
An orthodontic appliance is disclosed and which cooperates with both the upper and lower dental arches of a patient and which includes an archwire coupler which is attached to individual archwires that are releasably attached to individual orthodontic brackets on the anterior facing surface of a patient's teeth requiring orthodontic treatment; and a multiple section elongated telescoping assembly which is rotatably and releasably coupled to the archwires attached to the upper and lower dental arches of a patient undergoing treatment, and wherein the multiple section elongated telescoping assembly effects movement of the upper dental arch in a rearward direction, and the lower dental arch in a forward direction when the multiple section elongated telescoping assembly is in a given position along a predetermined course of travel.
According to an aspect there is provided a drivetrain assembly (1) for a personal care device (10). The drivetrain assembly (1) comprising: a shaft (2); a frame (4) comprising an opening in a surface (4a) of the frame (4) through which the shaft (2) extends; and an abutment (3) provided in cooperation with the shaft (2). An engagement surface (3a) of the abutment (3) is configured to engage with the surface (4a) of the frame (4) such that relative movement between the frame (4) and the shaft (2) in a given direction (d) is inhibited past a threshold distance.
A biopsy site marker configured to expand upon deployment into a biopsy cavity, and visible under several different imaging modalities, comprises a superabsorbent hydrogel component and a radiopaque element. The hydrogel is in a compressed, dehydrated state prior to deployment to facilitate placement of the marker within the biopsy site, and thereafter expands upon deployment in the biopsy site. Such expansion limits migration of the site marker.
A device is provided for ultrasound-based reflection and transmission tomography. A plurality of ultrasonic transducers are held around an imaging volume to be filled with an ultrasonic coupling medium, the transducer holder having an opening for inserting, into the imaging volume, at least one part of a body to be imaged. During imaging, the body to be imaged is supported, where a support-member-opening allows access to the transducer holder by at least one part of the body. A diaphragm is arranged across the support-member-opening such that a center of a diaphragm-opening is placed substantially at a predetermined position. The ultrasonic coupling medium flows out of the imaging volume when at least one part of the body to be imaged is inserted into the imaging volume filled with the ultrasonic coupling medium and/or during imaging.
Methods and apparatus are provided for electrically addressing multiple ultrasonic transducers that are connected to a common electrical channel and housed within an imaging probe. An imaging probe may comprise an imaging ultrasonic transducer and a moveable element for controlling the direction of an emitted imaging beam, and an angle sensing ultrasonic transducer, where the angle sensing ultrasonic transducer is configured for determining the direction of an ultrasonic imaging beam. The angle-sensing transducer may be configured to direct an angle sensing ultrasonic beam towards an acoustically reflective substrate and provide a signal by detecting a reflected ultrasonic beam reflected from the acoustically reflective substrate, where the acoustically reflective substrate is positioned relative to the movable element such that motion of the movable element produces a change in the signal.
Method and processor for time-domain processing of a waveform signal are disclosed. The method includes filtering, by employing one or more cut-off frequency values, the waveform signal for generating the first portion and the second portion, acquiring a frequency shift value, generating a modulated signal having a first frequency portion and a second frequency portion and where the one or more cut-off frequency values have been determined for ensuring that the first frequency portion and the second frequency portion are non-overlapping portions of the modulated signal, and generating the modified signal using the first frequency portion.
A biological sound detection device includes a housing, a medium, a transducer unit, a detection unit, and a pressure adjusting unit. The medium has an acoustic impedance closer to water than air. The transducer unit is arranged in the housing, and converts a biological sound transmitted through the medium into an electric signal. The detection unit provides, together with the housing, an accommodation region that accommodates the medium, detects the biological sound, transmits the biological sound to the medium, and is deformable in a direction approaching the transducer unit according to a load of a physical body. The pressure adjusting unit adjusts a pressure of the medium so as to suppress an increase in the pressure of the medium due to deformation of the detection unit.
A method is for generating a synthetic mammogram. In an embodiment, the method incudes acquisition of a plurality of projection data sets at a plurality of projection angles; and generation of at least one synthetic mammogram with an image property essentially equivalent to a conventional full-field digital mammography acquisition based on several projection data sets.
The present disclosure relates to a system and method for digital radiography. The system may include an X-ray generation module, an X-ray acquisition module, a control module, a support module and a power supply module. The system may include one or more moving components. The X-ray acquisition module may have different configurations, such as a vertical configuration, a horizontal configuration and a free-style configuration. The control module may be configured for controlling the motion of the moving components, the selection of an X-ray acquisition module of a specific configuration, and parameters of the X-ray exposure and image acquisition. The support module may include a system of guiding rails. The power supply module may include a supercapacitor.
This document relates to technologies of projecting an incision marker onto a patient using a movable gantry carrying a medical imaging system and at least one laser which is adjustable relative to the gantry. The medical imaging system is used for capturing a fluoroscopic or x-ray image of at least a part of the patient from a viewing direction. Then a virtual marker is set in the captured image in order to indicate a point or region of interest, for example as a point or at least one line of an incision. Then the laser is used to indicate, from a projection direction different from the viewing direction, the point or region of interest onto the surface of the patient, thus making the point or region of interest visible from the outside.
An infectious disease prevention supporting device according to an embodiment of the present invention is an infectious disease prevention supporting device including a processor. The processor is configured to perform a detection process that detects a motion of a forearm or a wrist by a user, a proximity determination process that determines whether the user's hand is in proximity to a mucosa of the user's face based on the motion detected by the detection process for a predetermined period of time, and a warning generation process that generates a warning to suppress the proximity of the user's hand to the mucosa when it is determined by the proximity determination process that the user's hand is in proximity to the mucosa.
Examples of the present disclosure describe systems and methods for the long-term, real-time active monitoring of a wireless implant. In aspects, a wireless biosensor may be implanted in a breast biopsy cavity. The biosensor may detect biochemical parameter data of the breast biopsy cavity and the human body. The biosensor may transmit the detected biochemical parameter data in real-time to a surveillance system wirelessly coupled to the biosensor. The surveillance system may then facilitate the evaluation of the biochemical parameter data. In examples, the evaluation may comprise detecting trends in a tumors microenvironment, monitoring the progress of a treatment, or adjusting a treatment to tailor a personalized treatment.
A dermal patch for collecting a physiological sample includes a housing with a collection chamber, a sample channel and a pin within a receptacle of the housing. The sample channel is configured to direct a physiological sample drawn from a subject to the collection chamber. The pin is removably positioned within the receptacle and is configured to move from an undeployed position to a deployed position. The pin is configured to seal the receptacle when in the undeployed position and is further configured to facilitate generation of negative pressure in the sample channel when the pin is moved from the undeployed to the deployed position.
A biosensor apparatus comprises a biosensor device and a cover that is configured to attach to the biosensor device. The biosensor device includes a surface section that is disposed above the user's skin and an implantable section that is injected into the user's skin. The implantable section includes a bending detector and sensing circuitry. The sensing circuitry includes one or multiples of a biomarker sensor array, a control biomarker sensor array, a temperature sensor, and/or a biofouling detector.
One or more radar sensors can be used to monitor patients in a variety of different environments and embodiments. In one embodiment, radar sensors can be used to monitor a patient's breathing, including monitoring of tidal volume, chest expansion distance, breathing rate, etc. In another embodiment, a patient position can be monitored in a patient bed, which can be used as feedback for control of bladders of a patient bed. Additional embodiments are described herein.
An apparatus includes an interface and a processor. The interface is configured for exchanging signals with: (i) a probe, which is inserted into a body of a patient and includes a flexible distal-end assembly, wherein the distal-end assembly comprises a magnetic position sensor and two or more intra-body electrodes, and, (ii) multiple body-surface electrodes attached externally to the body of the patient. The processor is configured to estimate, based on the signals exchanged with the probe, a spatial displacement of the magnetic sensor between consecutive measurements, and to estimate a position of the distal-end assembly in the body based on (i) the signals exchanged with the intra-body electrodes and the body-surface electrodes, (ii) a-priori known spatial relationships between two or more of the intra-body electrodes of the probe and (iii) the estimated spatial displacement of the magnetic sensor.
A method for preventing cytokine storm by suppressing clonal expansion of hyperactivated lymphocytes in a COVID-19 infected patient. The method includes placing at least four electrodes on skin of the COVID-19 infected patient by putting at least two electrodes at two locations over chest in front of ribcage of the COVID-19 infected patient and putting at least two other electrodes at two locations adjacent to lung tissue of the COVID-19 infected patient and suppressing mitosis of hyperactivated proliferative lymphocytes cells within the lung tissue of the COVID-19 infected patient by electrically stimulating the hyperactivated proliferative lymphocytes. Electrically stimulating the hyperactivated proliferative lymphocytes includes generating an alternating electric field (AEF) within the lung tissue by applying an AC voltage to the at least four electrodes and periodically changing a direction of the generated AEF in a plurality of directions within the lung tissue.
In some aspects, the present disclosure provides methods for identifying a disease in an epithelial tissue of a subject. Methods for identifying a disease in an epithelial tissue comprise the generation of a depth profile of the epithelial tissue using signals generated from the tissue by pulses of light directed towards a surface of the epithelial tissue. In some aspects, the present disclosure provides apparatuses consistent with the methods herein.
A robotic surgical system in which the system applies a scaling factor between user input from a user input device and corresponding movements of the robotic manipulator. Scaling factors may be applied or adjusted based on detected conditions such as the type of instrument being manipulated, detected distance between multiple instruments being manipulated, user biometric parameters.
A robotic system comprises a display that is viewable by an operator. An operator reference frame is defined relative to the display or the operator viewing the display. The robotic system also includes an input device movable by the operator and a processing unit. The processing unit is configured to present, in the display, a first image of a first tool captured by an imaging device, receive, from the operator, a first indication that a first axis of the input device is aligned with a corresponding axis of the first tool in the first image, and in response to the first indication, determine a first alignment relationship between the imaging device and the first tool based on a second alignment relationship between the operator reference frame and the input device.
Disclosed herein is a magnetic-based tracking system for tracking an ultrasound probe to create a three-dimensional visualization. The system includes a reference device including a reference magnet; an ultrasound probe including an ultrasound acoustic transducer or acoustic array that acquires ultrasound images and a magnetometer that detects a magnetic field generated by the reference magnet. The ultrasound probe couples a first ultrasound image with a first magnetic field strength, wherein both of the first ultrasound image is received and the first magnetic field strength is detected at a first time; and a console including a processor and non-transitory computer-readable medium having stored thereon a plurality of processor executed logic modules that perform operations including receiving and recording a plurality of coupling of ultrasound images and detected magnetic field strengths, and generating the 3D visualization from the ultrasound images by aligning the ultrasound images in accordance with a corresponding detected magnetic field strength.
A system includes: a first movable stage which is movable with respect to an eye of a subject; a second movable stage mounted on the first movable stage, wherein the second movable stage is movable with respect to the first movable stage; a fixation target disposed on the second movable stage; and an optical system disposed in an optical path between the fixation target and the eye, wherein the optical system is configured for projecting the fixation target upon the eye to accommodate the eye. The optical system includes a Stokes cell in the optical path between the fixation target and the eye. The optical system non-telecentrically projects the fixation target upon the eye.
Examples herein describe a surgical instrument that deliver a first energy and a second energy configured to seal the tissue. The first energy may be operated by a first energy algorithm and second energy may be operated by a second energy algorithm. The surgical instrument may include an updatable memory that may store a default control algorithm that may control both the first energy algorithm and the second energy algorithm simultaneously. The surgical instrument may include a processor that may be configured to operate in a first mode at a first time, wherein in the first mode the processor may be configured to operate according to the default control algorithm. The processor may receive data at a second time that may cause the processor to operate in a second mode, wherein in the second mode the processor may be configured to operate according to an alternative control algorithm.
An electrosurgical apparatus including a robotic tip is provided. The electrosurgical apparatus includes a plurality of actuators and hinging members. The robotic tip includes a retractable electrode. The actuators are coupled to the hinging members via a plurality of pulling mechanisms, such that, one or more of the actuators is rotated to selectively pull one or more of the plurality of pulling mechanisms to pivot and rotate the robotic tip and/or extend and retract the electrode. The electrode is coupled to a gas source and an energy source, such that, the electrode can produce plasma for use in surgical applications.
An energy application apparatus applies energy to an object. An energy application unit applies energy to the object, wherein the energy application unit is adapted to use electrical current for applying the energy. A current measuring unit measures the electrical current used by the energy application unit and provides a signal being indicative of whether the energy is applied to the object based on the measured electrical current. The signal can be used by, for instance, a monitoring unit and/or a display unit for using and/or indicating the information whether energy is actually applied or not, without requiring a direct communication between the energy application unit and the monitoring unit and/or the display unit.
A rotary impactor for orthopedic surgery includes an output anvil and a hammer that is capable of imparting linear and rotary force on the anvil. The anvil may be moveable on a leadscrew element to alternately generate energy in an energy storage means and to move along the leadscrew element to impact the anvil. A viscoelastic mechanism or a dampening mechanism is used to reduce the reflected force and or torque during operation of the rotary impactor. High frequency linear impacts by the impactor obviate the need for a surgeon to provide an external push force on the impactor in order to perform a successful surgical operation.
A pulmonary access device comprises an elongated shaft having a proximal shaft section, a bendable shaft section, a distal shaft section, and a channel. The pulmonary access device further comprises a profiled stylet configured for being disposed in the working channel of the elongated shaft, the profiled stylet having a proximal stylet section with a first lateral stiffness profile, an intermediate stylet section having a second lateral stiffness profile less than the first lateral stiffness profile, a distal stylet section, wherein, when the profiled stylet is disposed in the working channel of the elongated shaft, the intermediate stylet section axially aligns with the bendable shaft section. The pulmonary access device further comprises a pull wire affixed to the distal shaft section, such that, when the pull wire is tensioned, the bendable shaft section bends, thereby deflecting the distal shaft section relative to the proximal shaft section.
The present invention comprises at least sensing, monitoring, and display of motor current which is then used in various embodiments of a rotational atherectomy device to determine and/or predict, among other things, treatment progression, treatment completion, optimal rotational speed, optimal advancement or traversal speed during treatment, whether stall appears imminent, and/or reacting to stop motor rotation before a stall occurs. In some embodiments, the determination or prediction results in an automatic, or preprogrammed adjustment by the control unit of the rotational speed of the rotating drive shaft and associated tool.
Some embodiments provide a soft tissue device, such as a transverse carpal ligament cutting device having one or more balloons that are deflated when the device is in an inactive position and are inflated when the device is in an active position. Other embodiments provide a soft tissue cutting method, such as a method of cutting a transverse carpal ligament that uses a soft tissue cutting device.
The present invention provides a coronary artery bypass surgery treatment tool or the like including a flexible tube, a suction cup in which an opening portion is formed to communicate with the flexible tube and which is provided at a distal end of the flexible tube, a joint portion which has a suction path, a male connector which is provided in one of a proximal end of the flexible tube and a distal end of the suction path of the joint portion, and a female connector which is provided in the other thereof and is detachably connected to the male connector.
Certain aspects relate to systems and techniques for articulating medical instruments. In one aspect, the instrument includes a wrist having at least one degree of freedom of movement, and an end effector coupled to the wrist. The end effector can include a cartridge for delivering a plurality of clips to tissue. The wrist may include one or more cables capable of moving an actuator with one degree of freedom of movement within the end effector to advance one or more clips through the end effector.
Delivery systems for liquid embolics and methods of using them are disclosed. The devices generally include a catheter and one or more retention elements to limit migration of the liquid embolic to non-target sites.
A surgical severing and stapling instrument, suitable for laparoscopic and endoscopic clinical procedures, clamps tissue within an end effector of an elongate channel pivotally opposed by an anvil. Various embodiments are configured to be operably attached to a robotic system to receive actuation/control motions therefrom.
A buttress assembly is configured to temporarily adhere to a wet surgical stapler end effector. The buttress assembly includes a buttress body and a humidity tolerant adhesive material. The humidity tolerant adhesive material is applied to at least one side of the buttress body. The humidity tolerant adhesive material is configured to hold the buttress body to an underside of an anvil or a deck of a staple cartridge for at least five minutes in an environment of 100% relative humidity at approximately 37° C.
A compression-self-adjusting staple that comprises a substantially U-shaped staple having a bridge, two legs extending from the bridge at an angle thereto, and a compression device. The compression device is at least partly disposed between the legs and has a bias portion with a compression surface that is movably disposed between the legs and a compression resistor. The compression resistor is connected to the bridge and to the compression surface and is formed into a plurality of bends that resist movement of the compression surface towards the bridge with a pre-set compressive force.
A suturing system including a sheath, a handle assembly proximal the sheath, an elongate body disposed between the sheath and the handle, a plurality of needles disposed distal the elongate body in a pre-deployed configuration and movable into the elongate body in a deployed configuration, each of the plurality of needles including a needle tip, each needle tip being orientated proximally towards the elongate body in the pre-deployed configuration, and a needle capture assembly disposed between a distal end of the elongate body and the handle, the needle capture assembly including two needle engaging edges longitudinally spaced with respect to each other, with each being configured to interlock with at least one of the plurality of needles.
The present disclosure relates generally to systems, medical devices, and methods for closing an opening in a target tissue using hydraulics and/or pneumatics. In some embodiments, a medical device may include an endoscopic device operable to close an opening in a target tissue, and an actuator operable with the endoscopic device, wherein the actuator includes a piston within a chamber. The piston may include a piston head engaged with an interior surface of the chamber, and a piston rod coupled to a tissue engagement component of the endoscopic device, wherein pressure from a fluid within the chamber actuates the tissue engagement component.
Medical devices and methods of using medical devices are disclosed. An example tissue retraction device includes a first engagement member having a first end and a second end, a second engagement member having a first end and a second end, a first elastic member attached to the second end of the first engagement member, and a first alignment member having a first end, a second end and a lumen extending therethrough. Further, the tissue retraction device has a first length, the first alignment member has a second length, the first elastic member extends within the lumen of the first alignment member and the second length of the first alignment member is less than or equal to the first length of the tissue retraction device.
A surgical instrument is disclosed including a surgical device including a transducer positioned to provide vibrations along a longitudinal axis at a predetermined frequency and an end effector positioned distally from the transducer. The surgical instrument further includes a sleeve configured to receive the surgical device and a rail positioned along an interior portion of the sleeve. The surgical device includes a feature for receiving the rail. The surgical device is slidable along the rail.
An imaging module includes an electric cable including a plurality of wirings, an imager having an imaging surface intersecting an axial direction of a distal end of the electric cable, and a flexible wiring board configured to electrically connect the imager and the electric cable. The wiring board includes a plurality of extending portions that extend from at least three portions of a connection portion connected with the imager. At least one wiring pad to which at least one of the plurality of wirings of the electric cable is connected is provided in each of the plurality of extending portions.
A distal end member of an insertion apparatus includes: a base; a recessed portion which is recessed on a surface of the base; an opening forming surface formed on a surface of the base so as to surround a periphery of an opening of the recessed portion; and a lid member with a plate shape including a contact surface which is larger than the opening of the recessed portion and is brought into contact with the opening forming surface, the lid member closing the opening of the recessed portion by bringing the contact surface into contact with the opening forming surface. The lid member is formed so as to expose at least a portion of a side surface of the lid member disposed adjacently to the contact surface of the lid member to an outer surface of the base.
Methods, apparatus and systems for determining a region attribute, and electronic devices are provided. In one aspect, a method includes: identifying a marker line in a target map, the target map being a map of a to-be-cleaned target scene, an intelligent cleaning device relying on the target map during a cleaning process, determining an enclosed region and an unenclosed region with a first position as a reference point in the target map, based on the identified marker line and an auxiliary object in the target map, the auxiliary object including a map boundary and an obstacle, the first position being a position of a preset reference object in the target map, determining the enclosed region as a user-defined cleaning region for the cleaning process of the intelligent cleaning device, and determining the unenclosed region as a normal cleaning region for the cleaning process of the intelligent cleaning device.
The present invention relates to a collapsible portable shower or personal hygiene system. The system is in the form of a collapsible enclosure formed by two interlocking pieces including a collapsible tapered top piece and a collapsible tapered bottom piece. Both the top piece and the bottom piece have foldable panels for collapsing and extending the device. The top piece further has a protrusion at the bottom, and the bottom piece has a groove along the top surface for creating a leakproof enclosure. Finally, the top piece further comprises handles and hanging holes or openings, and the bottom piece comprises a drain hole for draining water from the device upon completion of the bathing process.
A ligature-resistant, multifold paper towel dispenser has a housing having a top panel, a front panel, a rear panel, and a pair of side panels secured together to define a hollow, interior chamber. The housing has an open bottom end through which a stack of paper towels may be inserted into the interior chamber. The dispenser also includes a support and dispenser assembly for resiliently supporting the stack of paper towels and for permitting manual dispensing of successive individual paper towels from the open bottom end of the housing. The support assembly includes at least one resilient flexible member which permits the paper towels to be supported thereon and dispensed therebelow and which at the same time is ligature-resistant due to its flexibility.
A food processor assembly is disclosed. An example food processor assembly includes an assembly base, a bowl base, a bow, a lid, and a blade storage container. The assembly base includes a rotary input shaft that selectively couples to a coupler of a blender base. The bowl base selectively couples to the assembly base with the rotary input shaft extending through the bowl based. The bowl includes a body and a central column integrally formed with the body though which the rotary input shaft extends. The lid selectively couples to the bowl. The lid includes a feed tube to receive food items. The lid having a first vertical orientation to selectively couple to the bowl and a second vertical orientation to selectively couple to the bowl. The blade storage container selectively couples to the lid when the lid in coupled to the bowl in the second vertical orientation.
A grinding machine for a coffee, spices or another granular food includes a couple of grinding disks and wherein the couple of grinding disks rotate during a grinding. Among many advantages, the grinding machine provides a lower energy consumption and a lower noise emission at a same ground product rate.
A cooking accessory insert for a cooking grill includes a heat distribution duct that, installed, extends from a burner proximate to the bottom of the grill's fire box generally to a cooking level near the top of the fire box. The heat distribution duct is defined by a plurality of side walls extending from a top end of the heat distribution duct to a bottom end, tapering inward, or narrowing, from top to bottom. A top surface substantially covers the top end of the heat distribution duct, while the bottom is open. A cover is provided to cover the top surface, defining a baking chamber between the cover and the top surface. A cooking surface element such as a pizza stone is removably disposed on the top surface, spaced apart from the top surface by a plurality of spacers.
A brewing device for producing a beverage from two differently sized capsules; the brewing device comprising two parts opposite and mutually movable between an open or loading position of a capsule and a closing or brewing position, one of the two parts defined by a cup-shaped body formed by a first portion and by a second portion defining between them a seat designed to receive the capsule during a movement of the cup-shaped body towards the closing position; the second portion designed to slide with respect to the first portion between a smaller seat position and a larger seat position due to the interaction with the larger capsule during the movement of the cup-shaped body towards the closing position; and a blocking device provided to define, in the closing position, a constraint to keep the second portion still only when the second portion is in the normal smaller seat position.
A wine decanter includes a control circuit board; and a water pump, an air pump, a power supply and a switch electronically connected with the control circuit board respectively. An inlet end of the water pump is connected to one end of a first connecting pipe, an outlet end of the water pump is connected to one end of a second connecting pipe; an outlet end of the air pump is connected to one end of the gas pipe, and the other end of the gas pipe is connected to any position of the liquid flow path which includes the first connecting pipe and the second connecting pipe; the red wine drawn by the water pump is mixed with air injected by the air pump in the liquid flow path for decanting.
A reusable beverage container has a glass cup having a formed mouth having a smooth exterior frustoconical surface which widens in exterior diameter towards a rim of the mouth. The mouth has a height of greater than 15 mm. A lid engages the mouth. The lid has a top section and an elastomeric skirt, the top section having a drinking aperture therethrough and the skirt defining an inner frustoconical surface and an outer surface. The inner frustoconical surface conforms in shape and size to the outer frustoconical surface and the skirt thickening towards a lower edge thereof.
A modular product display unit includes a tray and display inserts. The tray includes a magnetic top surface and an apron at least partially surrounding the magnetic top surface and extending above the magnetic top surface. The display inserts are disposed on and magnetically coupled to the magnetic top surface, the display inserts form product-display compartments on the magnetic top surface.
An attachment device is provided which allows a range of accessories to be mounted above a bassinet. The attachment device includes two clamps which are biased by a spring to be pulled toward one another, a vertical pole, and an arm which may be curved such that it attaches to the vertical pole at one end and may be substantially horizontal at the other end. The end of the arm furthest from the pole includes an attachment point for attaching accessories. An adapter may be used to connect the accessories to the attachment point. Specific safety measures may also be provided to prevent the attachment device from falling forward into the bassinet and to allow the attachment device to be removed quickly if necessary.
Various embodiments of the present invention are directed to a convertible children's high chair. According to various embodiments, the convertible high chair generally includes a first child seat supported above a floor by a high chair frame, and a second child seat configured for being removably coupled to the first child seat. The second child seat is configured such that, when detached from the high chair's first child seat, it can be used as a booster seat. In certain embodiments, the second child seat includes a base surface configured to stably support the second child seat on a separate support surface.
A stabilizing fin for coupling a cooler to a furniture having two walls, comprising a body having at least two flaps, the flaps having proximal ends and distal ends. The proximal ends of the at least two flaps can be hingedly coupled to each other through a hinged connector. The body may include an attachment mechanism to couple the body to the cooler. The at least two flaps can be folded toward each other over the hinged connector to form a flat fin, wherein the formed flat fin can be inserted frictionally between the two walls of the furniture through the distal ends of the at least two flaps, and wherein a biasing mechanism causes at least one flap of the at least two flaps to exert force against at least one wall of the two walls of the furniture, thereby holding the body and the attached cooler in place.
A dual air chamber structure having two independent and air impervious chambers, with each chamber being inflated and deflated by a separate air valve. The inner chamber, except for its air valve, is completely contained by the outer chamber and is comprised of a primary horizontal conduit and a plurality of inflatable intermittent vertical posts made of small diameter tubing which are connected by a corresponding plurality of horizontal conduit made of small diameter tubing, such that the inner chamber as a whole is comprised of a repeating series of inflatable vertical posts followed by inflatable horizontal connectors. The outer chamber forms an air impervious bladder around the inner chamber, except for the air valve of the inner chamber.
A shelf-supporting device for the reversible connection of a shelf with shoulders of a piece of furniture includes a main body having a movable engagement system, to which a pin is connected. The movable engagement system slides with respect to the main body between a first non-operating position, in which the pin does not protrude from the shelf, and a second operating position, in which the pin protrudes outwardly from a transverse edge of the shelf. The movable engagement system has two distinct parts, coupled together, and the connection between the slide and the pin may be an interference coupling, a shape coupling, or another type of coupling. This shelf-supporting device makes it possible to miniaturize the pin by drastically reducing its diameter, thus improving the aesthetic impact of the housing hole in the shoulders, and may be made modular by using pins of different diameters and materials.
Furniture, such as a bed, dresser, cabinetry has a display system affixing a stack of interchangeable decorative panels to the furniture. The display system has an overlaying panelar frame that captures the stack of panels and has at least one elongated fastener securing the overlaying panelar frame on to a surface of the furniture item. The stack of interchangeable panels are each visually different such as having different colors and/or patterns and can be sandwiched between the overlaying panelar frame and the mounting surface in a pocket to immovably maintain the interchangeable panels against the furniture component. The stack of interchangeable panels can be rearranged such that a different panel is placed on top of the stack or the outermost position and thereby be visible through the opening in the overlaying panelar frame.
Described herein are apparatuses (such as desks) with adjustable top panels. In some embodiments, an apparatus includes a frame, having a movable component that is configured to move upwards and downwards. The apparatus also includes: a first top panel attached to the movable component and configured to move upwards and downwards with the movable component, and a second top panel attached to the frame and aligned parallel to the first panel, so that the first panel is adjustable to be flush with the second panel or adjustable to a level above the second panel. The apparatus can also include a barrier panel attached to the frame or the first panel, arranged perpendicular to the first and second panels and oriented downward from the first panel at a side of the first panel closest to the second panel.
An inner support panel includes a first partial panel, a second partial panel, a first layer, a second layer a first panel portion, a second panel portion, a first layer, a second layer, and at least one support structure. The first layer is stacked on the second layer. The first partial panel includes one or two combinations consisting of at least part of the first layer and at least part of the second layer. The second partial panel includes one or two combinations consisting of at least the other part of the first layer and at least the other part of the second layer. The first partial panel and the second partial panel are connected to each other and form a hollow structure by defining a cavity. At least part of the second partial panel extends towards the cavity to form the support structure. The first partial panel can be supported by the support structure.
An attachment for a hair dryer includes a first end configured to selectively connect to a body of the hair dryer, and a second end spaced from the first end. The second end includes at least one outlet that is an elongate slot. The attachment also includes prongs extending from the second end and configured to engage hair, a body defining a passage for airflow between the first end and the second end, and a connector configured to extend into a central passage defined by the body of the hair dryer and connect the first end of the attachment to the body of the hair dryer. The connector includes a wall extending along an axis and forming an elongate cylinder that corresponds to the shape of the central passage.
An embodiment of the present invention provides a protective sports glove having a novel combination of liner sections, breathable mesh sections, stretch joints, and shock absorbing cushions to provide maximum protection to the user's fingers, hands, wrists, and lower forearms while maintaining as much flexibility within the glove and tactile feel on both palmar and dorsal sides of the glove as possible. A novel 2-panel palmar section construction eliminates the presence of seams, stitching or excess material in a critical area on the palmar side of a wearer's hand to further improve tactile feel and grip.
Disclosed herein is a mask with an ePTFE membrane including: a mask sheet for covering a wearer's nose and mouth; and a mask string which is connected to both ends of the mask sheet and is held to the wearer's ears, wherein the mask sheet includes an ePTFE membrane. The mask sheet includes: an inner layer located toward the wearer's face; an outer layer located on the opposite side of the inner layer which faces the wearer's face; and the ePTFE membrane located between the inner layer and the outer layer. Furthermore, both ends of the outer layer, both ends of the ePTFE membrane and both ends of the inner layer are bonded mutually.
The atomizer identifier is configured to identify an atomizer connected to a battery pole. The atomizer includes a first contact structure and an atomizer identification circuit, and the battery pole further includes a second contact structure matching the first contact structure. The atomizer identifier includes: an identifier chip, configured to determine whether to provide an identification voltage; and a peripheral circuit, configured to connect the identifier chip and the second contact structure, for being connected to the atomizer identification circuit via the second contact structure and the first contact structure of the atomizer connected to the battery pole in a first connection manner or the atomizer connected to the battery pole in a second connection manner, so that the atomizer identification circuit is driven according to the identification voltage determined to be provided by the identifier chip to read information of the atomizer identification circuit to the identifier chip.
A device for storing and vaporizing liquid media can comprise an annular liquid media storage tank and a heater configured to vaporize liquid stored in the annular liquid media storage tank.
A food dehydrator with a heating element located beneath a fan in a chamber of the food dehydrator. The heating element includes resistors, connected in series, sandwiched between and in thermal contact with two heatsinks to heat and dry the air within a volume defined by the chamber.
A vegetable food product and a method of making a dehydrated vegetable food product are provided. A quantity of vegetables is cut to a predetermined size. The quantity of cut vegetables is cooked. The quantity of cut vegetables has surface moisture removed. A flavoring material is imparted into the quantity of vegetables. The quantity of cut vegetables is substantially dehydrated, wherein each of the cut vegetables has a jerky-like texture, wherein shearing through the jerky-like texture requires a force of at least 30 N until a 95% strain is achieved utilizing a TA-HD Plus Texture Analyzer Device. The quantity of vegetable may include a quantity of potatoes.
A system for smoking or grilling food that uses a wood pellet burner to provide the heat and smoke for the smoking/grilling process and wherein all the electrical requirements for the system are provided by a thermoelectric generator that receives thermal energy from the wood pellet burner and converts a portion of that thermal energy into electricity, and wherein a microcontroller is used to accurately regulate the smoking or grilling temperatures and the temperatures of the thermoelectric generator.
A method for making diphenyl tablets includes compressing diphenyl crystals. The diphenyl tablets produced from the method can be used to inhibit fungal growth, repel and/or kill insects and rodents, and/or prevent corrosion in a space by placing the diphenyl tablets into the space such that diphenyl vapor permeates into the space.
An herbicidal composition and method. An herbicidal composition including of one or more herbicidally active ingredients dissolved and/or suspended in an MCPA-2-ethylhexyl carrier, where the active ingredient carrier is otherwise oil and solvent free and the composition is chemically and physically stable. A method of preparing an herbicidal composition and a method of controlling weeds are also described.
An apparatus for controlling ingress and egress of biologically transmitting insect species to standing water disposed within a stormwater treatment and water storage system.
An artificial reef structure including thin tensile members as part of the structure. These tensile members readily accumulate marine life to create a more organic structure. The reef structure can accommodate a wide variety of ocean sensing and communication systems. Embedded lighting and electronic elements can be used to attract and monitor marine life.
A beehive assembly has a column of hive bodies which are releasably connected to a vertical metal spine. Upper and lower metal pivot members extend between the spine and a post mounted to the ground. The upper pivot members extend away from the post and include a removable handle. Depressing the handle causes the column of hive bodies to ascend into an operating position where the bee colony within the hive bodies is elevated above the ground. Raising the handle brings the hive column to a lowered position for access by a beekeeper. A latch or latches are disposed to secure the pivot members with respect to the post at desired elevations. Springs extending between the post and the spine assist the beekeeper when raising or lowering the hive and cushion the lowering.
The present pet waste station system is made up of a plurality of units having a sod section which fits into a tray. The method of preparing the system includes growing the sod section apart from the tray for a period. The sod section has live grass, a root system and a soil medium. Once the root system is established in the soil medium, the sod section is placed into the tray, which has a bottom, a series of walls and a ledge with a plurality of interlocking nodes. Two units can connect by engaging interlocking nodes from one unit to interlocking nodes of another unit. Once connected, the overlapping ledges form a seal that prevents liquid from escaping between two units when the pet waste station system is in use.
A stabilizing apparatus for stabilizing a mobile irrigation tower of a pivot irrigation system includes a pair of outrigger arms which extend from opposite sides of the irrigation tower. The outrigger arms are able to move between an extended position and a retracted position. The distal ends of the out rigger arms present ground engaging elements adapted for low friction passage across a farm ground surface. When the outrigger arms are in the extended position, the ground engaging element of each arm is in contact with or at least in close proximity to the farm ground surface at a location which is spaced transversely away from the irrigation tower. If the outrigger arms are in the extended position and if the irrigation system is subjected to a high velocity wind, the ground engaging elements will engage the farm ground surface and resist overturning movement of the irrigation tower.
A kit and method of abrading grain provides multiple components to improve the threshing operation within an agricultural combine. The kit includes a unique concave design, open valley rasp bars, and restrictor plates. The method of abrading grain allows threshing operations for large grains such as corn and, also, for small grains such as soybeans. For example, the kit can be used to facilitate construction of a harvesting system that comprises: a drum of a rotary combine; a straight bar concave in a first position, wherein the straight bar concave utilizing intersecting bars, wherein at least some of said intersecting bars including a sharp leading edge, wherein the sharp leading edge abrades harvested materials and separate grain therefrom when the rotary drum rotates; and a plurality of round bar concaves in at least a second and a third position.
An electronic device comprises a semiconductor memory that includes: a first line; a second line disposed over the first line to be spaced apart from the first line; a variable resistance layer disposed between the first line and the second line; a first electrode layer disposed between the first line and the variable resistance layer; and a first oxide layer disposed between the variable resistance layer and the first electrode layer. The first electrode layer includes a first carbon material doped with a first element, and the first oxide layer includes a first oxide of the first element.
Provided are a resistive random access memory (RRAM) and a manufacturing method thereof. The resistive random access memory includes multiple unit structures disposed on a substrate. Each of the unit structures includes a first electrode, a first metal oxide layer, and a spacer. The first electrode is disposed on the substrate. The first metal oxide layer is disposed on the first electrode. The spacer is disposed on sidewalls of the first electrode and the first metal oxide layer. In addition, the resistive random access memory includes a second metal oxide layer and a second electrode. The second metal oxide layer is disposed on the unit structures and is connected to the unit structures. The second electrode is disposed on the second metal oxide layer.
A magnetoresistive random access memory (MRAM) structure is provided in the present invention, including multiple MRAM cells, and an atomic layer deposition dielectric layer between and at outer sides of the MRAM cells, wherein the material of top electrode layer is titanium nitride, and the nitrogen percentage is greater than titanium percentage and further greater than oxygen percentage in the titanium nitride, and the nitrogen percentage gradually increases inward from the top surface of top electrode layer to a depth and then start to gradually decrease to a first level and then remains constant, and the titanium percentage gradually decreases inward from the top surface of top electrode layer to the depth and then start to gradually increase to a second level and then remains constant.
A handset for an ultrasonic device for bone cement removal and/or osteotomy operations comprises a handset body which encloses ultrasound generating means including at least one piezoelectric transducer and a horn, connection means configured to connect the handset to a tool to which the ultrasounds generated by the ultrasound generating means are transmitted, a duct for circulation of a cooling medium, the duct extending at least partially on the outside of the handset, a triggering element whose activation causes the activation of the ultrasound generating means, and a control lever coupled to the handset body at a connection point, the control lever being configured to activate the triggering element by means of its movement about the connection point.
A method for producing an ultrasonic transducer or ultrasonic transducer array, the method comprising providing or depositing a layer of piezoelectric material on a substrate. The piezoelectric material is a doped, co-deposited or alloyed piezoelectric material. The piezoelectric material comprises: a doped, co-deposited or alloyed metal oxide or metal nitride, the metal oxide or metal nitride being doped, co-deposited or alloyed with vanadium or a compound thereof; or zinc oxide doped, co-deposited or alloyed with a transition metal or a compound thereof. Optionally, the deposition of the layer of piezoelectric material is by sputter coating, e.g. using a sputtering target that comprises a doped or alloyed piezoelectric material. In examples, the layer of piezoelectric material is deposited onto the substrate using high power impulse magnetron sputtering (HIPIMS). Further enhancement may be obtained using substrate biasing (e.g. DC and/or RF) during deposition of the layer of piezoelectric material. In further examples, the substrate is provided on a rotating drum whilst tire layer of piezoelectric material is being deposited.
An organometallic compound represented by Formula 1:
wherein M1 and M2 are each independently a first row transition metal, a second row transition metal, or a third row transition metal in the Periodic Table of Elements; and wherein L1, L2, a1, a2, Ar1, Ar2, R1 to R4, and LK in Formula 1 are as described in the present disclosure.
A heterocyclic compound may be represented by Formula 1:
where Formula 1 is the same as described herein. An organic light-emitting device including the heterocyclic compound in, for example, an emission layer may have excellent driving voltage, luminescence efficiency, and external quantum yield.
A display panel and an electronic device including the same are disclosed. A circuit layer of the display panel includes at least a first transistor and a second transistor. The first transistor includes a first oxide semiconductor pattern, a gate electrode, a first electrode in contact with one side of the first oxide semiconductor pattern, a second electrode in contact with the other side of the first oxide semiconductor pattern, and a first-first metal pattern disposed on the substrate to overlap the first oxide semiconductor pattern. The second transistor includes a second oxide semiconductor pattern, a gate electrode, a first electrode in contact with one side of the second oxide semiconductor pattern, a second electrode in contact with the other side of the second oxide semiconductor pattern, a first-second metal pattern disposed on the substrate to overlap the second oxide semiconductor pattern, and a second metal pattern disposed between the second oxide semiconductor pattern and the first-second metal pattern.
A display device includes a first substrate where a display area and a non-display are defined, wherein a plurality of pixels are arranged at the display area and the non-display area surrounds the display area; a dam surrounding the display area and arranged at the non-display area; an organic light emitting diode provided in the display area; an encapsulation film disposed on the organic light emitting diode; a buffer layer disposed on the encapsulation film; an insulating film disposed on the buffer layer; a pad area arranged outside the dam, wherein the buffer layer and the insulating film extend from the display area to the pad area; a link line disposed between the dam and the first substrate; and a routing line provided on the insulating layer between the display area and the pad area.
An OLED display panel and a manufacturing method of the same are provided. The OLED display panel includes a base plate, a first electrode layer and a pixel definition layer on a first side of the base plate, a plurality of electroluminescent layers on the first electrode layer, a second electrode layer covering the pixel definition layer and the plurality of electroluminescent layers, an encapsulation layer covering the second electrode layer, a black matrix and a color filter layer on the encapsulation layer and a plurality of photosensitive fingerprint sensors on a second side of the base plate; a plurality of light-transmitting holes are arranged in the black matrix, and orthographic projections of the plurality of light-transmitting holes on the second electrode layer are in hollow-out regions of the second electrode layer, respectively; and the photosensitive fingerprint sensors are in the orthographic projections of the light-transmitting holes, respectively.
A display apparatus includes: a first electrode; a bank layer defining a first opening which overlaps the first electrode in a plan view; an emission layer which overlaps the first electrode through the first opening; a second electrode on the emission layer; an encapsulation layer on the second electrode; a first insulating layer on the encapsulation layer, where the first insulating layer includes a first portion overlapping the first opening and defines a trench surrounding the first portion; a touch electrode on the first insulating layer; a second insulating layer on the touch electrode and defining a second opening which overlaps the first opening; and a third insulating layer on the second insulating layer.
A display device includes a substrate including a display area and a peripheral area. A display element is disposed in the display area and is electrically connected to a thin film transistor. A power supply line is disposed in the peripheral area. An insulating layer covers a portion of the power supply line. A barrier layer is disposed on the insulating layer and includes a first side surface facing the display area and a second side surface facing away from the display area. At least one of the first side surface or the second side surface includes a concavo-convex surface. The barrier layer forms a step difference with respect to an upper surface of the insulating layer. An end of the insulating layer is positioned beyond the second side surface of the barrier layer on a side of the barrier layer facing away from the display area.
A hybrid organic-inorganic solar cell is provided that includes a substrate, a transparent conductive oxide (TCO) layer deposited on the substrate, an n-type electron transport material (ETM) layer, a p-type hole transport material (HTM) layer, an i-type perovskite layer, and an electrode layer, where the substrate layers are arranged in an n-i-p stack, or a p-i-n stack, where the passivating barrier layer is disposed between the layers of the (i) perovskite and HTM, (ii) perovskite and ETM, (iii) perovskite and HTM, and perovskite and ETM, or (iv) TCO and ETM, and ETM and perovskite, and perovskite and HTM, or (v) substrate and TCO, and TCO and ETM, and ETM and perovskite, and perovskite layer and HTM, or (vi) a pair of ETM layers, or (vii) a pair of HTM layers.
A memory array is provided that includes a plurality of word lines and a plurality of bit lines, and a plurality of memory cells each including a corresponding magnetic memory element coupled in series with a corresponding selector element. Each memory cell is coupled between one of the word lines and one of the bit lines. Each memory cell has a half-pitch F, and comprises an area between 2F2 and 4F2.
Provided herein may be a semiconductor memory device and a method of manufacturing the semiconductor memory device. The semiconductor memory device may include a stacked body including a plurality of interlayer insulating layers and a plurality of gate electrodes that are alternately stacked on a substrate, and a plurality of channel structures configured to vertically pass through the stacked body. Each of the plurality of channel structures may include a core insulating layer, a first channel layer, a second channel layer, a tunnel insulating layer, and a charge storage layer that extend vertically towards the substrate. Electron mobility of the first channel layer may be higher than electron mobility of the second channel layer.
According to one embodiment, a semiconductor memory device includes a first insulating layer; a first conductive layer provided in the first insulating layer and extending in the first direction; a second conductive layer extending in the first direction and provided adjacent to the first conductive layer in a second direction; and a contact plug coupled to one surface of the first conductive layer in a third direction. Thicknesses in the third direction of portions of the first and second conductive layers that overlap the contact plug in the third direction are smaller than thicknesses in the third direction of portions of the first and second conductive layers that do not overlap the contact plug in the third direction.
A one-time programmable (OTP) memory device includes an access transistor, a word line, a voltage line, a well, a first filling oxide layer, a first semiconductor layer, and a bit line. The access transistor includes a gate structure on a substrate, and first and second impurity regions at portions of the substrate adjacent to the gate structure. The word line is electrically connected to the gate structure. The voltage line is electrically connected to the first impurity region. The well is formed at an upper portion of the substrate, and is doped with impurities having a first conductivity type. The first filling oxide layer is formed on the well. The first semiconductor layer is formed on the first filling oxide layer, and is doped with impurities having the first conductivity type and electrically connected to the second impurity region. The bit line is electrically connected to the well.
A semiconductor device includes an active pattern on a substrate, a gate structure buried at an upper portion of the active pattern, a bit line structure on the active pattern, a spacer structure on a sidewall of the bit line structure, a contact plug structure contacting the spacer structure, an insulating interlayer structure partially penetrating through upper portions of the contact plug structure, the spacer structure and the bit line structure, and a capacitor on the contact plug structure. The spacer structure includes an air spacer including air. The insulating interlayer structure includes first and second insulating interlayers. The second insulating interlayer may include an insulation material different from that of the first insulating interlayer. A lower surface of the second insulating interlayer covers a top of the air spacer, and a lowermost surface of the first insulating interlayer is covered by the second insulating interlayer.
A memory cell is disclosed. The memory cell includes a transistor and a capacitor. The transistor includes a source region, a drain region, and a channel region including an indium gallium zinc oxide (IGZO, which is also known in the art as GIZO) material. The capacitor is in operative communication with the transistor, and the capacitor includes a top capacitor electrode and a bottom capacitor electrode. Also disclosed is a semiconductor device including a dynamic random access memory (DRAM) array of DRAM cells. Also disclosed is a system including a memory array of DRAM cells and methods for forming the disclosed memory cells and arrays of cells.
A method of forming a semiconductor memory device, the semiconductor memory device includes a plurality of active areas, a shallow trench isolation, a plurality of trenches and a plurality of gates. The active areas are defined on a semiconductor substrate, and surrounded by the shallow trench isolation. The trenches are disposed in the semiconductor substrate, penetrating through the active areas and the shallow trench isolation, wherein each of the trenches includes a bottom surface and a saddle portion protruded therefrom in each active areas. The gates are disposed in the trenches respectively.
Methods, systems, and devices for designing and implementing power and cooling fluid in a computing environment such as an electronics rack are disclosed. The disclosed methods and systems may provide for a high degree of power distribution and cooling fluid distribution reliability. To provide for a high degree of reliability, the system may include a number of protective features that may reduce the likelihood of connectors used for power and cooling fluid distribution from being damaged. The system may also provide for segregation of power distribution components from cooling fluid distribution components. The rack configurations include codesign of the server and rack to form the physical segregation. The segregation may reduce the chance of these components impacting the operation of other components.
A heat spreader including a body having a first conduction value and a first electromagnetic interference shield value. The heat spreader further includes a conduction enhancement affixed to the body, the conduction enhancement having a second conduction value greater than the first conduction value and a second electromagnetic interference shield value less than the first electromagnetic interference shield value. At least a portion of the conduction enhancement is positioned relative to the body for increasing an effective electromagnetic interference shield value of the body associated with the at least a portion of the conduction enhancement.
In one embodiment, an immersion cooling system includes a container to contain first coolant received from a first cooling source and server chassis at least partially submerged into the first coolant. Each server chassis includes an electronic device and a cooling plate attached thereon to extract at least a portion of heat generated by the electronic device. The cooling plate includes an inlet port to receive second coolant from a second cooling source, a coolant channel to distribute the second coolant, and an outlet port to return the second coolant back to the second cooling source. The cooling system further includes a return manifold to be coupled to the second cooling source, the return manifold having one or more manifold return connectors respectively coupled with the server chassis and to receive and return the second coolant from the server chassis back to the second cooling source.
A computational heat dissipation structure includes a circuit board including a plurality of heating components; and a radiator provided corresponding to the circuit board; wherein a space between the adjacent heating components is negatively correlated with heat dissipation efficiency of a region where the adjacent heating components are located. Since the space between the adjacent heating components of the disclosure is negatively correlated with the heat dissipation efficiency of the region where the adjacent heating components are located, i.e., the higher the heat dissipation efficiency of the region where the adjacent heating components are located is, the smaller the space between the adjacent heating components in the region will be, the heat dissipation efficiencies corresponding to the heating components are balanced, and load of a fan is reduced.
A manufacturing method of an embedded component package structure includes the following steps: providing a carrier and forming a semi-cured first dielectric layer on the carrier, the semi-cured first dielectric layer having a first surface; providing a component on the semi-cured first dielectric layer, and respectively providing heat energies from a top and a bottom of the component to cure the semi-cured first dielectric layer; forming a second dielectric layer on the first dielectric layer to cover the component; and forming a patterned circuit layer on the second dielectric layer, the patterned circuit layer being electrically connected to the component.
A chip substrate includes a base substrate having a plurality of base circuit traces mounted thereon for supporting a chip assembly and an intermediate substrate mounted on the base substrate adjacent the plurality of base circuit traces. The intermediate substrate has a plurality of intermediate circuit traces mounted thereon. Each of the plurality of intermediate circuit traces are wirebonded to a respective one of the plurality of base circuit traces and the plurality of intermediate circuit traces are configured to be electrically coupled to an external device. For example, each of the plurality of intermediate circuit traces may be wirebonded to a respective one of a plurality of feedthrough circuit traces mounted on a feedthrough device.
Disclosed is a wiring board, including: an insulating substrate containing aluminum oxide; and a metallized layer that includes a metal phase containing a metal material and a first glass phase containing a glass component and that is disposed on the insulating substrate. At least one of the insulating substrate and the metallized layer further contains mullite. In the metallized layer, the metal phase continues in a three-dimensional network shape, and the first glass phase is embedded between the metal phase.
A device includes a circuit carrier board and a conductor element that is configured to transfer an electric current from and/or to the circuit carrier board. The device includes an electrically conductive, elastically deformable, contoured, plate-like connection element that connects the circuit carrier board to the conductor element and is configured to create a local, dynamic resilience. As a result of this, a force transmission front the conductor element to the circuit carrier board may be reduced. A plate thickness of the connection element is at least 2 cm. A power converter and an aircraft having such a device are also provided.
A dielectric layer for manufacturing a component carrier is described. The dielectric layer includes a first section including a first material having a first material property; and a second section including a second material having a second material property. The second material property is different from the first material property. A method for manufacturing such a component carrier and a component carrier including such a dielectric layer is further described.
A multi-channel power supply system including a power supply circuit configured to generate a drive signal for powering a plurality of color channels based on an input power signal, a first current control circuit coupled to a first color channel of the plurality of color channels and configured to adjust a first channel current of the first color channel based on the drive signal and a first reference signal, and a channel controller configured generate the first reference signal based on a color temperature according to a black body curve.
A light source driver for a light source of a luminaire. The disclosure proposes to monitor a parameter, responsive to or a cause of a temperature change in a resistive element to facilitate determination of whether the light source driver is compatible with an AC supply. The resistive element in connected in series between the rectifying arrangement, of the light source driver, and the energy storage capacitor for storing charge that powers the light source.
Selecting combinations of antennae of a wireless device based on transmission type includes determining a transmission type of a transmission between the wireless device and an access node and, based on the transmission type, instructing the wireless device to utilize different antenna configurations, including 5G EN-DC, MIMO, mm-wave, and other combinations. The different antenna configurations comprise different combinations of antennae of the wireless device.
According to one configuration, a mobile communication device is in communication with a network. During operation, the mobile communication device executes a monitor application associated with embedded SIM (Subscriber Identity Module) information downloaded to programmable hardware of the mobile communication device. The monitor application is received as a portion of the embedded SIM information. Via the executed monitor application: the monitor application monitors a status of the embedded SIM information and then communicates the status over a network to a remote communication management resource.
Embodiments of the present disclosure relate to the field of communications technologies, and provide an RRC connection management method and apparatus, and a device. The method includes: sending, by UE when in an RRC idle mode, an uplink data request to an access network node by using a shared data sending resource, where the uplink data request includes uplink data and request information that is used for requesting to enter an RRC connected mode; and receiving, by the UE, an access network dedicated identifier of the UE from the access network node, where the access network dedicated identifier of the UE is determined by the access network node according to the request information, and the UE is in the RRC connected mode within a validity period of the access network dedicated identifier of the UE.
According to an aspect, a wireless device, operating in a wireless network, handles transitions from Radio Resource Control, RRC, connected state to an RRC inactive state. The wireless device receives, from the wireless network, a message indicating either that the wireless device is to enter the RRC inactive state or that the wireless device is to remain in the RRC inactive state. The wireless device, responsive to the message, uses, for inactive state operation, at least one previously stored inactive state parameter corresponding to a parameter omitted from the message.
A method and apparatus for data transfer in RRC_INACTIVE state is provided. Method for data transfer in RRC_INACTIVE state includes receiving configuration information for second resume procedure, initiating second resume procedure and transmitting a uplink RRC message together with data in a MAC PDU. During the procedure, a timer starts and stops at specific time points for supervising the procedure
Aspects of the present disclosure provide apparatuses, methods, processing systems, and computer readable mediums for retransmitting a random access channel (RACH) message, for example, based on parameters for initial RACH transmission. For example, a user equipment (UE) transmits an initial transmission of an uplink RACH message with repetition. The UE receives a downlink control information (DCI) scheduling a retransmission of the uplink RACH message with repetition. The UE determines parameters for the retransmission of the uplink RACH message with repetition based, at least in part, on parameters for the initial transmission of the uplink RACH message with repetition. The UE retransmits the uplink RACH message to the network entity with repetition in accordance with the determined parameters.
This application provides a random access method and apparatus applicable to satellite communication. The method includes: obtaining a round-trip transmission latency tRTD of a signal between a terminal device and a satellite; obtaining a random access parameter based on the tRTD, where the random access parameter includes one or more of: a duration between a moment at which the terminal device sends a random access preamble and a moment at which the terminal device starts to receive a random access response RAR, a duration of a window in which the terminal device receives the RAR, a duration between a moment at which the terminal device stops receiving the RAR and a moment at which the terminal device sends the random access preamble again, and a subframe duration; and receiving, by the terminal device the RAR based on the random access parameter.
Embodiments of the present invention are drawn to electronic systems that perform EHT operations for a wireless network supporting a 160+160 MHz/320 MHz operating mode. RTS/CTS frame exchange sequences and TXOP truncation can be performed using punctured preambles according to subchannels indicated in a bitmap subfield (e.g., an Allowed Bitmap Subfield). Preamble puncturing is supported for EHT PPDUs transmitted to multiple STAs using MU-RTS/MU-CTS frames transmitted in non-HT duplicate PPDUs. Preamble puncturing is also supported for an EHT PPDU transmitted to a single STA. The RTS and CTS frames can be sent in a non-HT duplicate PPDU with preamble puncturing, for example.
Example operations may include initiating wireless transmission of a first data frame of data designated for wireless transmission. The wireless transmission of the first data frame may be via a first wireless signal packet configured to carry the data of the first data frame. The operations include directing termination of the wireless transmission of the first data frame via the first wireless signal packet prior to wireless transmission, via the first wireless signal packet, of all of the data of the first data frame. In addition, the operations include directing, in response to termination of transmission of the first data frame, wireless transmission of a termination signal, the termination signal indicating that transmission of the first data frame via the first wireless signal packet terminated prior to completion of transmission of all of the data of the first data frame via the first wireless signal packet.
Certain aspects of the present disclosure provide techniques for wireless communication by a user equipment (UE). For example, the UE receives a physical downlink shared channel (PDSCH) channel state information (CSI) report configuration from a network entity. The UE monitors a PDSCH transmission. The UE generates and transmits a CSI report to the network entity, based on the monitoring and in accordance with the PDSCH CSI report configuration.
A method performed by a WTRU may comprise receiving first periodic uplink transmission information and second periodic uplink transmission information which are different. The method may further comprise receiving configuration information indicating that data of a first logical channel is allowable for transmission in accordance with the first periodic uplink transmission information and that data of a second logical channel is allowable for transmission in accordance with the second periodic uplink transmission information. Data of the first logical channel may be transmitted in accordance with the first periodic uplink transmission information and data of the second logical channel may be transmitted in accordance with the second periodic uplink transmission information.
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may determine whether to perform a simplified uplink control information (UCI) multiplexing procedure or select an overlapping uplink channel having the highest priority and drop the remaining overlapping uplink channels. The UE may determine that a first symbol period of the physical uplink scheduled channel (PUSCH) is aligned with a first symbol period of the physical uplink control channel (PUCCH) and the UE may multiplex UCI with an uplink data transmission. The UE may transmit the multiplexed UCI and uplink data on the PUSCH and drop the PUCCH. The UE may perform UCI multiplexing for overlapping PUCCH and PUSCH, located on the same component carrier (CC). The UE may refrain from performing UCI multiplexing if the PUSCH and the PUCCH are located on different CCs, and may simultaneously transmit UCI and uplink data over the different CCs.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, in a single dynamic signaling communication, an indication to activate one or more coverage enhancement parameters. The UE may activate the one or more coverage enhancement parameters based at least in part on receiving the indication. Numerous other aspects are provided.
A wireless communication system includes one or more base stations able to divide resources between multiple network operators sharing the base station. A shared base station is configured to monitor a contribution to the load on the base station associated with network operators sharing the base station resources and to provide the determined contribution to the load to one or more other base stations for use in load balancing between the base stations.
Provided are wireless communication methods for D2D communication and UEs therefor. A wireless communication method involves transmitting either a first DCI or a second DCI based on whether a first UE and a second UE are to be in a communication type of groupcast or unicast. In the wireless communication methods, the first DCI and the second DCI are scrambled by the UE ID of the second UE if the first UE and the second UE are in the communication type of unicast upon transmitting the first DCI and the second DCI, and the first DCI and the second DCI are scrambled by the group ID if the first UE and the second UE are in the communication type of groupcast upon transmitting the first DCI and the second DCI.
A UE can receive a PDCCH for scheduling a first PDSCH on a serving cell. The UE can receive the first PDSCH from among a plurality of SPS PDSCHs and the first PDSCH on the basis of that i) the first PDSCH overlaps, with respect to time, with the plurality of SPS PDSCHs that are required to be received on the serving cell, and ii) a PDCCH ends at least 14 symbols before the start symbol of the earliest SPS PDSCH from among the plurality of SPS PDSCHs.
A New Radio (NR) control signal that indicates one or more Long Term Evolution (LTE) network parameters may be transmitted to NR UEs to enable the NR UEs to identify which resources carry LTE signal(s). The NR UEs may then receive one or more NR downlink signals over remaining resources in a set of resources without processing those resources that carry LTE signal(s). The NR downlink signals may have a zero power level, or otherwise be blanked, over resources that carry the LTE signal(s).
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and an apparatus for transmitting and receiving data for coordination communication is provided.
Methods, systems, and devices for wireless communications are described. A first device, which may be a user equipment (UE), may transmit a sidelink control information SCI) message (e.g., an SCI-1 message) on a physical sidelink control channel (PSCCH) to a group of devices. The SCI may message may reserve a set of sidelink resources for a sidelink communication between the first device and a second device of the group of devices. The first device may receive an acknowledgment (ACK) message on a physical sidelink feedback channel (PSFCH) from the second device. Based on receiving the ACK message, the first device may release the set of sidelink resources and may transmit a release message (e.g., a physical sidelink release channel (PSRCH) message) on a PSRCH that includes an indication of the released set of sidelink resources.
Systems and methods are provided to determine an estimated location of a user equipment (UE). For instance, a UE can provide a positioning request to a node while the UE is in a radio resource control idle (RRC_IDLE) or inactive (RRC_INACTIVE) state. The positioning request can be implemented in a random access channel (RACH) message A (MsgA). The UE can then receive a positioning response from the node. The positioning response can be implemented in a RACH message B (MsgB).
First information corresponding to a radio signal received at a first sensing device from a candidate location is obtained. Second information corresponding to a radio signal received at a second sensing device from the candidate location is obtained. A first relationship between the first sensing device and the candidate location and a second relationship between the second sensing device and the candidate location are determined. A first inverse and a second inverse of respectively the first and second relationships are obtained. A first estimate of the radio signal at the first sensing device is determined from the first information and the first inverse. A second estimate of the radio signal at the second sensing device is determined from the second information and the second inverse. Energy emitted from the candidate location is measured based on the first estimate and the second estimate.
A method of communicating over a plurality of network slices concurrently. The method comprises building a distributed ledger by a network slice registrar function (NSRF) application executing on a computer, where the distributed ledger records an association between a first network slice allocated to a user equipment (UE) and a second network slice allocated to the UE, providing information about the association of the UE to the first network slice and the second network slice by the NSRF application to a network slice selector function (NSSF), establishing a first communication link between the UE and a first call end point via the first network slice by a first user plane function (UPF) and establishing a second communication link between the UE and a second call end point via the second network slice by a second UPF based on the information provided by the NSRF application to the NSSF.
A method for transporting a Multi-Transport Network Context Identifier (MTNC-ID) over a Segment Routing Version 6 (SRV6) enabled data plane for fifth generation (5G) transport. The method includes setting an indicator in a flags field of a SRV6 header of a data packet that an MTNC-ID type-length-value (TLV) is included in a TLV field of the SRV6 header. The MTNC-ID TLV for the MTNC-ID is inserted in the TLV field of the SRV6 header of the data packet. The data packet with the SRV6 header containing the MTNC-ID is transmitted over the SRV6 enabled data plane to a next node along a forwarding path corresponding to the MTNC-ID.
Systems and methods are provided for in-vehicle data-driven connectivity optimization in a network of moving things. An on-board unit configured for deployment in a vehicle may obtain, during operations in an area of the network of moving things, connectivity-related data relating to coverage within the area, and generate or update, based on processing of the obtained connectivity-related data, a networking decision model. The networking decision model is configured for optimizing connectivity to the one or more access points in or associated with the network of moving things. The networking decision model may be shared with other on-board units deployed in other vehicles and/or with a Cloud-based network node in the network.
A telecommunications system, that after a communication is established by a first electronic communication device and a second electronic communication device, while the conversation is ongoing between a first person using the first electronic communication device and a second person using the second electronic communication device, responsive to content of converted text based on a plurality of words spoken, route the content to a cloud-based phone recognition and entity identification, annotation, and relevance processing resource, to enable display of information related to the content by at least one of the first electronic communication device and the second electronic communication device.
A method and an apparatus of measuring a position of user equipment (UE) in a wireless communication network are provided. The method includes receiving, from a base station, positioning reference signal (PRS) configuration information including information about at least one PRS resource set including at least one PRS resource for receiving a PRS, receiving, from the base station, the PRS based on the PRS configuration information, and performing position measurement of the UE based on the received PRS.
In one embodiment, a method includes receiving, at a tracking server from a user device, a hash value associated with a tracking device. The hash value is computed based on at least a unique identifying value associated with the tracking device. The hash value is configured to expire after a predetermined period of time. The method includes determining that the received hash value is not expired. The method includes identifying the tracking device based on a comparison between a stored hash value and the received hash value. The method includes updating one or more records stored in a database accessible to, and maintained by, the tracking server that are associated with the identified tracking device based on the received hash value.
The present disclosure relates to method and apparatus for mobility wireless communications. According to an embodiment of the present disclosure, a method performed by a wireless device in a wireless communication system comprises: performing measurements to derive a cell quality; determining a set of candidate cells for a mobility based on the cell quality; selecting a mobility target cell from the set of candidate cells for the mobility based on a number of good beams and a number of detected beams; and performing the mobility to the mobility target cell.
Disclosed are systems and methods for providing a differentiated neighbor list that can be individually generated for a specific service (e.g., per service) based on network service information, which can include, but is not limited to, a user equipment (UE) group identifier (ID), network slicing and/or quality of service (QoS) flow, and the like. Neighbors within the differentiated list can be characterized based on, but not limited to, service types, distance to devices, transport costs, service locations, and the like, or some combination thereof. The disclosed framework can generate and dynamically update a differentiated neighbor list for specific types of services so that optimal neighbor selection is performed for the type of service a UE is operating within to ensure that a network connection is maintained at a threshold satisfying QoS.
Methods, systems, and devices for wireless communication are described. A first device may transmit an indication of a first set of signal strength metrics for signal strengths of transmit beams of a second device using receive beams of the first device and a second set of signal strength metrics for signal strengths of transmit beams of the first device using the receive beams of the first device. The first device may determine, for one or more signal strength metrics in the first set of signal strength metrics, the second set of signal strength metrics, or both, a change in the corresponding signal strength. The first device may transmit, based at least in part on the determining, an indication of the change in the corresponding signal strength for each of the one or more signal strength metrics.
A method for providing backhaul dynamic link distance for backhaul is disclosed. In one embodiment, the method includes propagating, by a network owner, a configured link distance parameter as part of beacon; using, by a mesh node joining the network, the configured link distance parameter for backhaul to set slot-time and Acknowledgement (ACK)/Clear To Send (CTS) timeout values before joining the network; wherein the configured link distance parameter for backhaul is part of a backhaul network profile.
Methods, systems, and devices for wireless communications are described for joint communications among a UE and multiple transmission-reception points (TRPs) in which a subset of the multiple TRPs transmit periodic tracking reference signals (TRSs) for use in measurement and beam management at the UE and the multiple TRPs. The subset of TRPs may include TRPs having a relatively large contribution to signals received at the UE, and may transmit periodic (or semi-persistent) TRSs to be measured at the UE. One of the TRPs may provide configuration information to the UE of which TRPs are included in the subset of TRPs, or the UE may determine which TRPs are included in the subset of TRPs based on a signal quality of transmissions associated with each TRP.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless node may perform a listen-before-talk (LBT) operation in a first direction and a second direction, wherein the second direction is opposite to the first direction, and wherein the LBT operation is performed using a first receive beam in the first direction and a second receive beam in the second direction, and selectively performing a transmission in the first direction based at least in part on a result of the LBT operation. Numerous other aspects are provided.
A wireless LAN router includes a directional antenna configured to transmit and receive wireless signals to and from each device, and a processing circuit. The processing circuit learns training data indicating an incoming direction of a wireless signal from an authorized device. The processing circuit then determines whether a wireless signal of a detection target device is a wireless signal from an authorized direction, using an incoming direction of the wireless signal from the detection target device received by the directional antenna and the training data obtained by the machine learning, and outputs a result of determination.
Disclosed are a method and device for determining a security algorithm, and a computer storage medium. The method comprises: a first base station configures an RAN notification area for a terminal, wherein all base stations in the RAN notification area at least support a first security algorithm; the first base station configures the terminal for the first security algorithm.
An embodiment user authentication system for a connected vehicle service includes a service terminal configured to encrypt first vehicle identification information comprising identification information of a vehicle system and terminal identification information comprising identification information of the service terminal to generate a service identification (ID) comprising identification information of the connected vehicle service, and to display the service ID on a display screen as an optically readable code, and a user terminal configured to receive the service ID by scanning the code and to transmit the received service ID to a service server through an external network to request a user authentication.
A key generation method includes determining, by an access and mobility management function node, key-related information. The method also includes sending, by the access and mobility management function node, a redirection request message to a mobility management entity. The redirection request message includes the key-related information, and the redirection request message is used to request to hand over a voice service from a packet switched (PS) domain to a circuit switched (CS) domain. The method further includes receiving, by the mobility management entity, the redirection request message. The method additionally includes generating, by the mobility management entity, an encryption key and an integrity protection key for the voice service based on the key-related information.
The present invention relates to a method for communicating in a network from a first station to a second station, wherein the first station comprises at least one buffer memory for storing data packets to be transmitted, the method comprising the steps of
(a) the first station estimating the status of the at least one buffer memory,
(b) the first station transmitting at least one buffer status packet representative of the buffer memory status, wherein the method further comprises (c) adapting the value of a first parameter of the buffer status packets on the basis of a data traffic characteristic.
Disclosed is a speaker driver from which surrounding (suspension) has been omitted, including a magnet unit disposed in a set form, a vibration unit disposed adjacent to the magnet unit and generating a sound through vibration, and a winding unit disposed between the magnet unit and the vibration unit in a winding shape, generating magnetism in a first direction or a second direction which is a direction opposite to the first direction when power is applied to the winding unit, and vibrating the vibration unit by applying, to the vibration unit, a force generated in association with magnetism of the magnet unit.
The present application discloses a heat dissipation device. The heat dissipation device includes a heating element, a sounding device and a heat conductor. The speaker unit includes a diaphragm separating the accommodation space into a front cavity and a back cavity. The housing body is provided with first sound outlet holes communicating to the front cavity. Heat generated by the heating element is transferred outside along with an air flow in the front cavity. The heat dissipation device provided by the present application has the advantages of being good in heat dissipation effect and exquisite and compact in structure and capable of meeting the demand of miniaturization of the heat dissipation device.
An audio signal synchronization control device of the present disclosure includes a host controller, a plurality of audio devices, a communication unit capable of performing broadcast communication for controlling the plurality of audio devices from the host controller, and a clock oscillator that supplies a master clock of the same source oscillation to the plurality of audio devices. The host controller performs broadcast communication with a plurality of audio devices using a synchronization address. Each of the plurality of audio devices includes a synchronization control unit that generates a synchronization reset signal in a case where broadcast communication is performed by a synchronization address, a clock reset control unit that generates a timing signal in response to the synchronization reset signal, and an audio signal processing unit that processes audio data in accordance with the timing signal.
The present invention relates to a wireless speaker chair, and more particularly, to a wireless speaker chair capable of providing a sense of space and a three-dimensional effect to a user who sits in the chair through sounds output from a plurality of speaker channels and allowing the plurality of speaker channels to wirelessly receive sound signals and power which are received to output sounds.
Embodiments of an audio distribution module and system provide a compact and rugged audio switching device including a radio control unit in communication with an operator control panel. In various embodiments, an audio switching fabric is included with audio relays for directing the transmission and receipt of audio content between a headset in communication with the operator control panel and one or more radios in communication with the radio control unit, facilitating transmission and receipt of audio communications between the radio(s) and the headset.
A method is given for a broadband constant beam width acoustic array using shading function parameters for a three dimensional axially symmetric beam. Coefficients are calculated for an estimated shading function fitting the parameters that is a summation of Legendre polynomial orders. The number of orders is user specified. Null bearing locations can be determined from the parameters or from the shading function. A constant beam width shading function can be created from these parameters and used as amplifications and attenuations for a conical spherical array of transducers. The array can be truncated at the null bearing locations. The estimated shading function can be further refined by provided additional Legendre polynomial orders.
A group of devices acquire audio input of a sound, such as speech, using respective microphones. For pairs of devices in the group, intensity of energy of audio input at each of the devices in the pair is used to determine first proximity data. Relative differences in time-of-arrival of the sound at the devices in the pair is used to determine second proximity data. The first and second proximity data are used to determine an estimated closest device of the pair with respect to the sound. Comparison of the first proximity data to the second proximity also allows a confidence value to be associated with the estimated closest device. The estimated closest device with the greatest confidence value may be selected for use to acquire audio input, present output, and so forth. Additional techniques such as beamforming techniques may be applied to the audio input from the selected device.
Disclosed are system and methods for automated fitting of a hearing aid, through an automated hearing test based upon which a suitable set of hearing aid parameters is determined.
A hearing-aid device, in particular in the form of a conventional hearing aid, includes a signal processing apparatus for processing input signals and for outputting output signals. A loudspeaker unit has a loudspeaker and a conductor connection through which the loudspeaker is electrically conductively connected to the signal processing apparatus. A transmitter and reception unit has a coupling element. A coupling is formed over at least one galvanic isolation point between the coupling element and the conductor connection in such a way that at least a part of the loudspeaker unit is used as antenna structure in transmission and reception operation.
Aspects of the present disclosure provide methods and apparatuses for determining a nozzle of an audio device is, at least partially blocked. More specifically, based on a measured transfer function between the driver and a microphone and an expected transfer function between the driver and the microphone, a blockage is detected. In response to the detected blockage, the user is notified.
A mobile communications device that does not have a physical opening on the screen for audio is operable to transmit a signal to which a photoacoustic effect can be employed by interaction with water vapor in an ear of a user so as to generate audio in the ear or the immediate vicinity of the user's ear. Related methods, apparatuses, systems, techniques and articles are also described.
A system comprises automatic noise cancellation circuitry and interface circuitry operable to provide an interface via which a user can configure which sounds said automatic noise cancelling circuitry attempts to cancel and which sounds said automatic noise cancelling circuitry does not attempt to cancel. The interface circuitry may be operable to provide an interface via which a user can select a sound to whitelist or blacklist. The interface circuitry may be operable to provide an interface via which a user can increase or decrease an amount of noise cancellation that is desired. The interface circuitry may be operable to provide an interface via which a user can select from among three or more levels of noise cancellation.
Aspects of the subject technology relate to liquid-resistant microphone modules for electronic devices. A microphone module may include a non-porous membrane that seals the front volume of the microphone module from the external environment of the electronic device. The microphone module may also include a substrate having an opening that allows airflow between the front volume and an interior cavity within the housing of the electronic device. In various implementations, an inductive vent and/or a resistive vent may be provided over the opening in the substrate.
One example system for sharing content across videoconferencing sub-meetings includes a system comprising a processor; and at least one memory device including instructions that are executable by the processor to cause the processor to establish a videoconferencing session including a main meeting and a first sub-meeting, receive a content transmitted over a data stream to be displayed in the main meeting; cause the content to be displayed in the main meeting, receive a request to subscribe to the data stream over which the content is transmitted, and responsive to receiving the request to subscribe to the data stream, cause the content to be displayed in the first sub-meeting simultaneously with the content displayed in the main meeting.
Systems and methods for sharing data streams in a virtual collaboration room. The method includes receiving a user video data stream from a user device for display to one or more other participants in the virtual collaboration environment and receiving a user screen sharing data stream from the user device for display to the one or more other participants in the collaboration environment. The method further includes providing a participant video data stream and a participant screen sharing data stream associated with each participant of the one or more other participants in the collaboration environment to the user device, the data streams associated with each participant configured for simultaneous display with each other participant data stream at the user device and simultaneous display with the user video data stream and the user screen sharing data stream to the one or more other participants.
An image processing method comprises: performing a spectral analysis of a HDR image (220) to determine whether the HDR image (220) comprises spectral components indicative of a lighting of the scene by a modulated light source; analysing meta-data associated with a set of component images (221) for the HDR image to determine a difference between meta-data for one component image of the set and meta-data for at least one other component image of the set, any difference being indicative of an artefact caused by illumination of the scene by a modulated light source; combining a result of the spectral analysis and the meta-data analysis to provide an indication that illumination of the scene by a modulated light source is causing a visible artefact in at least one of the HDR images; and changing a HDR operating mode of the image processing system (200) accordingly.
An apparatus for correction of a direction to which a tool channel or a camera moves or is bent in a case where a displayed image is rotated. The apparatus includes at least one memory and at least one processor that executes instructions stored in the memory to receive a directional command of a capturing direction of a camera, move the capturing direction of the camera according to the received directional command, detect a rotation amount of a captured image displayed on a monitor, wherein the captured image is captured by the camera, and correct, based on the detected rotation amount, directional information corresponding to a particular directional command or directional coordinate for moving the camera, wherein the directional information is used for moving the capturing direction of the camera.
A control apparatus controls one or more image capturing units. The apparatus comprises: an obtaining unit configured to, based on an image of a plurality of objects captured by the image capturing units, obtain positions of the plurality of objects; and a generation unit configured to, based on at least the image, the positions of the plurality of objects and the orientation of the image capturing units, generate a control command for changing the orientation of the image capturing units.
One embodiment of a camera module may comprise: a lens barrel provided with at least one lens; a holder to which the lens barrel is coupled; a printed circuit board coupled on the bottom of the holder to face the lens; an adhering portion coupling the holder and the printed circuit board; an opening portion opening a portion of a first space formed through the coupling of the printed circuit board and the holder; and a housing coupled with the holder, wherein a second space separated from the first space may be formed through the coupling of the holder and the housing, and the opening portion may communicate the first space with the second space.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for detecting errors that can occur in third party content presentation and verifying that third party content provided by a content provider to a content platform is actually displayed and is visible to the user when the content platform is accessed on the client device. Methods can include receiving, from an application executing on a client device, a request to generate a digitally signed token that is used to validate whether a particular content item displayed at the particular portion of the display is a third party content item. A digital watermark embedded at the particular portion of the display can be extracted and decoded to obtain data for attributes that are descriptive of the particular content item. A digitally signed token can be generated using this data, and the token can then be provided to application.
An optical network includes a transmitting portion configured to (i) encode an input digitized sequence of data samples into a quantized sequence of data samples having a first number of digits per sample, (ii) map the quantized sequence of data samples into a compressed sequence of data samples having a second number of digits per sample, the second number being lower than the first number, and (iii) modulate the compressed sequence of data samples and transmit the modulated sequence over a digital optical link. The optical network further includes a receiving portion configured to (i) receive and demodulate the modulated sequence from the digital optical link, (ii) map the demodulated sequence from the second number of digits per sample into a decompressed sequence having the first number of digits per sample, and (iii) decode the decompressed sequence.
The present invention relates to an image encoding/decoding method and device, and the image encoding method or device according to an embodiment of the present invention may encode a position of a reference coefficient within a current transform block to be encoded, and encoding skip region information of a skip region selected on the basis of the position of the reference coefficient. The skip region information may represent whether or not coefficients within the skip region have an identical coefficient value.
An image decoding device includes a prediction unit configured to generate a prediction signal included in a prediction block based on a motion vector. The prediction unit is configured to perform refinement processing of setting a search range based on a reference position specified by the motion vector, specifying a corrected reference position having the smallest predetermined cost from the search range, and correcting the motion vector based on the corrected reference position. When a block size of the prediction block is larger than a predetermined block size, the prediction unit is configured to divide the prediction block into sub-block groups and perform the refinement processing for each sub-block.
A method for transmitting point cloud data according to embodiments may encode and transmit point cloud data. A method for receiving point cloud data according to embodiments may receive and decode point cloud data.
A predictive contrastive representation method for multivariate time-series data processing includes: mapping temporal coding information at a current moment and future situational information by using a logarithmic bilinear model to obtain a similarity; training the similarity according to a noise contrastive estimation method and prediction situational label data, and constructing, based on a training result, a predictive contrastive loss function of the temporal coding information at the current moment and the future situational information; sampling the prediction situational label data based on a corresponding optimal loss in the predictive contrastive loss function, optimizing the predictive contrastive loss function by using a direct proportion property between the sampling probability and the similarity, constructing mutual information between the temporal coding information at the current moment and the future situational information based on the optimized predictive contrastive loss function, and performing predictive contrastive representation by maximizing the mutual information.
The present invention relates to a method for decoding a bitstream for a video signal including at least one precinct, and a device for same. Specifically, the present invention relates to a method, and a device for same, the method including: a step for demultiplexing packets of the current precinct among the at least one precinct into a plurality of first packets and a plurality of second packets; and a step for entropy-decoding the plurality of first packets and the plurality of second packets in parallel, wherein the plurality of first packets and the plurality of second packets are respectively entropy-decoded in parallel by a first entropy decoder engine and a second entropy decoder engine, the plurality of first packets include packet 0, packet 1, packet 4, packet 6, and packet 8, and the plurality of second packets include packet 2, packet 3, packet 5, packet 7, and packet 9.
In transform coefficient coding, predetermined sets of transforms may be used. Embodiments of the present invention provide an encoder and a decoder for encoding a picture into/from a data stream using block-based prediction and block-based residual coding, the encoder and decoder supporting a set of transforms for the block-based residual coding. The encoder and decoder are configured to determine a transform candidate list of transforms for a current residual block out of the set of transforms based on a height and a width of the current residual block, and to encode/decode a prediction residual within the residual block using one selected transform out of the selectable list of transforms and selectively signal/derive the selected transform in/from the data stream.
An image encoding method includes, using an image as input, determining a first mode suited to encode the image in accordance with a first processing procedure; using the image as input, determining a second mode suited to encode the image in accordance with a second processing procedure; selecting one of first mode and the second mode as a final mode; encoding the image, using the final mode; and calculating a cost of using the second mode to encode the image. The second processing procedure is implemented by a reconfigurable circuit. In the selecting, the first mode is selected when the cost calculated in the calculating is higher than a first predetermined value, and the second mode is selected when the cost is lower than or equal to the first predetermined value.
An image forming apparatus includes a scanner configured to read an image of a document and generate image data of the image according to a reading mode, a storage device configured to store the image data and the reading mode used when reading the image of the document, and a processor. The processor generates a combined image that includes the image of the document and a reading direction image that indicates a reading direction of the scanner and has a shape indicating the reading mode, and store data of the combined image in the storage device. The processor determines a position of the reading direction image in the combined image and a size of the reading direction image in the combined image, based on a reading resolution of the scanner and a resolution of the image data stored in the storage device.
The present disclosure relates generally to image signal processing, including encoding signals for image data or artwork. A color blend/print model is used to predict signal detectability and visibility as is printed on a particular substrate, which facilitates object grading prior to print runs.
An electronic device includes: a communication unit that performs communication with an external device; and a control unit that issues a command to the external device via the communication unit, on the basis of at least one of capacity of the external device, and capacity of the electronic device.
Systems and methods for a work distribution service. At a multi-tenant platform that provides a work distribution service for a plurality of external systems, a priority is assigned to a first work item of a first external system. The work item is received via a RESTful work item API call request. The priority is assigned based on work item attributes of the work item and a workflow instruction corresponding to workflow information specified by the work item. The workflow instruction is provided by the external system via a RESTful Workflow API. A worker is assigned to the work item based on: the priority of the work item, the workflow information, and worker state managed by the first external system via a RESTful Worker API. The worker state includes worker attributes. The work item is generated by the external system, and the workflow instruction is managed by the external system.
A contact center system uses user profiles and agent profiles to determine a routing for a contact center engagement request from a user device to an agent device. Responsive to the contact center engagement request, a user profile associated with the user device is accessed to determine a prioritization score. The prioritization score can be determined in some cases using both information associated with the user profile and input obtained from the user device. Agent profiles are accessed to determine an agent to support the contact center engagement request based on the prioritization score. Each of the agent profiles corresponds to a different contact center agent or agent group. The determined agent may be selected from amongst a plurality of candidates identified based on the profile evaluation. A private session is then established between the user device and a device of the agent.
Systems and methods for predictive cross-platform customer service include receiving first data about a service provider system that includes a plurality of customer service platforms. First user interaction rules are determined based on the first data received. A first condition is then determined to exist in the service provider system based on the first data and the first user interaction rules. First instructions for the service provider system are then determined based on the first condition to achieve a customized user response. The first instructions are provided for the service provider system such that the plurality of customer service platforms has access to the first instructions. Second data of a user interaction with at least one customer service platform is received when the first instructions have been executed. The first instructions are updated to second instructions based on the second data received.
A recording device comprising a base, a top cover, at least one computer with a wi-fi dongle coupled to the base that is configured to automatically upload a .zip file of the audio files to a cloud network when the device is turned on and in range of a preferred wifi network, a hook switch coupled to the base, and electrically coupled to the computer, at least one rechargeable battery electrically coupled to the computer, an LED that indicates battery charge electrically coupled to the computer, at least one USB-A connector electrically coupled to the computer for charging the power source, a rotary dial coupled to the base and configured to extend through an opening in the top cover, a power button electrically coupled to the computer, and a handset removably supported by the top cover and electrically coupled to the computer.
Systems and applications are described that use group signature technology to allow for anonymous and/or semi-anonymous feedback while allowing for the application of rules and parameters. The use of group signature technology may serve to potentially mitigate or prevent malicious identification of individuals or entities providing a communication such as feedback. Feedback may range from constructive feedback all the way to the ‘whistleblower’ variety. It may be desirable to identify the individuals as belonging to a particular group or having a particular status or position while maintaining the anonymity of the individuals within the particular group.
The disclosed embodiments include computer-implemented processes that, using a distributed notarized ledger, constrain an ability of multiple parties to simultaneously, or near simultaneously, update or modify elements of reference data maintained within a centralized data store. For example, an apparatus may receive, from a first computing system, a request to modify reference data maintained at a second computing system. The apparatus may approve the first requested modification to the reference data based on a notarization criterion maintained within an element of a notarized distributed ledger, and perform operations that record notarization data characterizing the approved modification within an additional element of the notarized distributed ledger. The apparatus may also transmit the notarization data to the first computing system, and the notarization data causing an application program executed by the first computing system to modify local reference data in accordance with the notarization data.
Data can be protected in a centralized tokenization environment. A security value is received by a central server from a client device. The central server accesses a token table corresponding to the client device and generates a reshuffled static token table from the accessed token table based on the received security value. When the client device subsequently provides data to be protected to the central server, the central server tokenizes the provided data using the reshuffled static token table and stores the tokenized data in a multi-tenant database. By reshuffling token tables using security values unique to client devices, the central server can protect and store data for each of multiple tenants such that if the data of one tenant is compromised, the data of each other tenant is not compromised.
A matching apparatus generates a random number and transmits second encrypted data obtained by performing an operation of first encrypted data of each of first values related to a first binary vector encrypted and the random number to a matching request apparatus; transmits third encrypted data obtained by performing an operation of the second encrypted data and elements of a matching target second binary vector; based on a second value related to the first binary vector encrypted with the encryption key, the encrypted data and the random number, generates and transmits encrypted data and transmits the generated data to a verification apparatus as a query; and determines whether a count number of mismatched elements between the second binary vector and the first binary vector is less than or equal to a predetermined number based on values obtained by decrypting the encrypted data in the query.
A method for tracing a digital information element in a computer system including electronic devices of users and a system for archiving digital information elements including a blockchain-type distributed database, the method including a step of making the digital information element from the electronic device of one of the users, a step of archiving the digital information element, the archiving step including a substep of generating an identification element of the version of the digital information element, the method including a step of adding the identification element signed with a secure element associated to this user and/or to their electronic device in the distributed database, the addition step including a substep of encrypting the identification element from a cryptographic algorithm and the secure element, the cryptographic algorithm including at least one metric variable associated to the user.
Techniques for data compression for efficient network management are described herein. In one example, for each byte of input data, either: (1) a value of that byte is added to a first-instance array if the value of that byte has not yet been seen in the input data; or (2) an index value is added to an index array, wherein the index value points to the appropriate location in the first-instance array. An “address-bit array” is created with one bit for each byte of the input data. Each bit in the address-bit array indicates whether information of a corresponding byte of the input data was put into the first-instance array or the index array. When the input data file is smaller, the index values in the index array tend to be mostly small valued bytes. Accordingly, the number of zero-valued most significant bits (MSBs) present in all bytes may be stripped from the index array, thereby compressing the input data. The number of zero-valued MSBs stripped from all bytes in the index array may be indicated in a packet header.
Systems and methods are provided for initiation, use, access, and control of functionality of a network. In one aspect, the systems and methods can be utilized to generate information defining signaling or control performance and operational characteristics associated with the functionality in a variety of network environments. In another aspect, based on such information, adaptive signaling can be utilized to monitor, analyze and detect specific signaling signatures associated with the functionality. Managing signaling or control messages in response to information collected by monitoring and analyzing the adaptive signaling permits originating or requesting the functionality without conventional operation of a network component.
Methods and system include receiving frames of data generated for an online game, from a server device and encoding the frames using an encoder. Each encoded frame of data is transmitted to a client device over a network, for rendering. A monitoring engine is used to evaluate the data contained in the encoded frame to determine if an amount of data contained in the encoded frame exceeds a maximum data limit specified for a communication channel established between the server device and the client device. When the amount of data contained in the encoded frame exceeds the maximum data limit, a signal is sent to the encoder to dynamically reduce amount of data included in one or more subsequent frames forwarded to the client device for rendering. The adjusting is performed to maintain a frame rate defined for the online game.
Quality communication can be maintained for integrated channels in transaction systems. For example, a system can receive, by a transaction management layer, a transaction request from a transaction channel of a plurality of transaction channels, the transaction request being in a channel-specific format associated with the transaction channel. The system can, in response to a downstream transaction processing system processing the transaction request, receive a status indicator of the processing of the transaction request. The system can transform the status indicator into the channel-specific format associated with the transaction channel. The system can send the status indicator in the channel-specific format to the transaction channel. The transaction channel can be configured to perform an action in response to receiving the status indicator.
A verifier peer system transmits a request to an application of another peer system to obtain integrity data of the application. In response to the request, the verifier peer system obtains a response that includes kernel secure boot metrics of the other peer system and integrity data of the application and of any application dependencies. If the verifier peer system determines that the response is valid, the verifier peer system evaluates the integrity data and the kernel secure boot metrics against a set of Known Good Values to determine whether the integrity data and the kernel secure boot metrics are valid. If the integrity data and the kernel secure boot metrics are valid, the verifier peer system determines that the other peer system is trustworthy.
One or more Push-To-Talk (PTT) processing devices of an Internet Protocol (IP) communication system receive an indication that a telephone call has been parked in the IP communication system. The one or more PTT processing devices determine the location of one or more PTT users of the IP communication system. The one or more PTT processing devices generate a first PTT channel based upon location of the one or more PTT users. The first PTT channel includes a first subset of the one or more PTT users. The one or more PTT processing devices transmit a first PTT audio notification that the telephone call is parked in the IP communication system to the first PTT channel.
Disclosed is a method and a system configured to be arranged at a location. The system being configured for visual and auditory communication between one or more at-location participants and one or more far-end participants. The system comprising an audio/video (AV)-system. The AV-system comprising an audio component for audio transmission and a video component for video transmission. The AV-system is configured for providing a video-feed from the location. The AV-system is configured to connect to a unified communication cloud server for enabling/performing cloud communication service. The system comprising a functionality service software embedded in the AV-system. The functionality service software being configured for controlling a number of functionalities of the video-feed to generate a processed video-feed. The processed video-feed from the location is configured to be provided to the far-end participant(s) via the cloud communication service.
Various embodiments provide for asymmetric data transmissions using one or more efficiency features, which can be used in such applications as data network communications between sensors (e.g., cameras, motion, radar, etc.) and computing equipment within vehicles (e.g., smart and autonomous cars), or data network communications between a media server (e.g., movies or music) and a display device (e.g., one in a passenger compartment of a vehicle).
A system for detecting phishing websites accesses a website that comprises a plurality of images. The system extracts the plurality of images from the website. The system generates a hash value for each image from the plurality of images. Each hash value uniquely identifies its corresponding image. The system generates a first overall hash value for the website by hashing the generated hash values. The first overall hash value represents a signature of the website. the system compares the first overall hash value with a second overall hash value that is associated with a phishing website. The system determines whether the first overall hash value corresponds to the second overall hash value. If it is determined that the first overall hash value corresponds to the second overall hash value, the system determines that the website is associated with the phishing website.
For each network resource request received at a server of a cloud-based service, a determination of whether that request originated from a second network resource is made. For each such request where the network resource originated from the second network resource, a referrer indication is logged that indicates the second network resource is a referrer to that network resource. A network resource relevance dataset is generated based on the referrer indications of the second network resources. A relevance metric is associated with each second network resource based on a total number of referrer indications. A search request is received from a client device. Based at least in part on the network resource relevance dataset, search results are determined. The search results are transmitted to the client device.
Systems and methods are presented for mitigating cyber threats. Cybersecurity-related data are stored in a semantic cybersecurity database. A user interface converts a user input to a command utterance. A command node that corresponds to the command utterance is identified in the cybersecurity database. The command node is resolved to one or more action nodes that are connected to the command node, and each action node is resolved to one or more parameter nodes that are connected to the action node. The command node has a command that implements actions indicated in the action nodes. Each action can have one or more required parameters indicated in the parameter nodes. The values of the required parameters are obtained from the command utterance, prompted from the user, or obtained from the cybersecurity database. Actions with their parameter values are executed to mitigate a cyber threat in accordance with the user input.
Embodiments are directed toward a non-transitory processor-readable medium for providing a zero-day attack prevention cybersecurity system, including an agent and an orchestrator. The agent is configured to be installed at an endpoint within a network to be evaluated. The endpoint has a cybersecurity solution to be tested. The orchestrator is enables standardized tactics, techniques, and procedures (“TTPs”) and non-standard TTPs to be sent across the network to the endpoint. The agent is configured to limit network communication outgoing from the endpoint to predefined or selected communications while the agent is installed at the endpoint. Accordingly, the agent and the orchestrator cooperatively enable testing the cybersecurity solution of the endpoint with respect to both the standardized TTPs and the non-standard TTPs without exposing other endpoints in communication with the network to security risks posed by the standardized TTPs and the non-standard TTPs sent to the endpoint.
A method including transmitting, by an infrastructure device, a current fingerprint associated with a first instance of a source application; receiving, by the infrastructure device, respective results associated with comparing the current fingerprint with respective verification fingerprints, which are associated with instances of the source application other than the first instance; determining, by the infrastructure device based at least in part on the respective results, a determination result indicating whether the first instance of the source application is to be utilized for transmitting a transmission packet; and transmitting, by the infrastructure device, the determination result to indicate whether the first instance of the source application is to be utilized for transmitting the transmission packet. Various other aspects are contemplated.
In IP communication, an authentication code AC1 uniquely generated by a receiving-side communication device 1b is sent to an originating-side communication device 1a (S1, S2), and stored in the originating-side communication device (S3). Packets in which the stored authentication code is embedded are sent to the receiving-side communication device 1b on connection from the originating-side communication device 1a to the receiving-side communication device 1b (S4), and it is determined at the receiving-side communication device whether the originating-side communication device is true or false depending on if the authentication code sent from the receiving-side communication device is contained in the packets received from the originating-side communication device or not (S5).
The disclosed technology is generally directed to web authentication. In one example of the technology, authentication of a broker is obtained with an identity provider. Obtaining the authentication includes at least communication between the broker and a top-level frame and communication between the broker and the identity provider. The broker is executing in a descendant frame of the top-level frame. The top-level frame and the broker are hosted on different domains. At the broker, from an embedded application that is executing on another descendant frame of the top-level frame, a token request is received. Via the broker, a token is requested from the identity provider. The token is associated with an authorization of secure delegated remote access of at least one resource by the embedded application. At the broker, from the identity provider, the token is received. Via the broker, the token is provided to the embedded application.
A system for communicating email messages using tokens receives a request to send an email message to a receiver. The email message is associated with a sender's email address. The system determines whether the sender's email address is associated with a token from a plurality of tokens stored in a token-email address mapping table. The system generates a particular token for the sender's email address in response to determining that the sender's email address is not associated with a token, where the particular token uniquely identifies the sender's email address. The system sends the email message using the particular token instead of the sender's email address, such that the sender's email address remains anonymous from the perspective of the receiver.
Examples of renewal of security certificates of supplicant devices are described. In an example, a request to authenticate a supplicant device based on a security certificate is received by an authenticator device and from a supplicant device. The request comprises information relating to the security certificate which is expired. A login history of the supplicant device and presence of a valid account associated with the supplicant device in a directory database is determined. An authentication successful message is sent to the supplicant device based on the login history and presence of the valid account in the directory database. The supplicant device is redirected to a captive web portal for authentication of the supplicant device based on the login credential. In response to a successful authentication of the supplicant device in the captive web portal, a renewed security certificate for the supplicant device is provided.
Various embodiments of the present technology generally relate to authentication. More specifically, some embodiments relate to systems and methods for mobile application infrastructure and framework for application authentication. Currently, methods and systems for authentication are not flexible or dynamic and over-authentication has become a solution because it is cheap and easy. In contrast, in accordance with some embodiments of this application, the methods and systems can analyze authentication challenges and non-authentication challenges received from a server over a network in a client side infrastructure. The client side infrastructure can determine a customized, flexible, and dynamic plan for responding to authentication challenges in manner that avoids over-authentication on the client side.
According to an embodiment, a communication control device includes a first communication system connected between a first device and a network communication network, and a second communication system connected between the first device and the network communication network separately from the first communication system. The first communication system and the second communication system each include a controller. The controller executes switching such that one of the communication systems executes communication in the first communication mode, and when a problem is detected in the communication system that is executing communication in the first communication mode, the other communication system executes communication in the first communication mode.
Various embodiments of the present application set forth a computer-implemented method that includes receiving, by a trusted tunnel bridge and from a first application executing in a first network, a first encrypted data packet, where the first encrypted data packet includes an encrypted portion of data, and a destination device identifier (DDI). The method further includes determining, by the trusted tunnel bridge, a particular device in a second network and associated with the DDI included in the first encrypted data packet. The method further includes sending, by the trusted tunnel bridge directly to the particular device, the first encrypted data packet.
A method that is performed to access data nodes of a data cluster. The method includes obtaining, by a data access gateway (DAG), a request from a host; and in response to the request, obtaining bidding counters from the data nodes; obtaining metadata mappings from the data nodes; identifying, based on the bidding counters and metadata mappings, a data node of the data nodes associated with a highest bidding counter of the bidding counters and an appropriate metadata mapping of the metadata mappings; and sending the request to the data node.
A method in a virtual private network (VPN) environment, the method including determining, by a processor, first substitute domain information by utilizing a hashing function to hash a first time marker and a string of alphanumeric characters; determining, by the processor, second substitute domain information by utilizing the hashing function to hash a second time marker and the string of alphanumeric characters, the second time marker being different than the first time marker; and transmitting, by the processor, a connection request utilizing the second substitute domain information to reach a VPN service provider based at least in part on determining that the VPN service provider is unreachable via utilization of the first substitute domain information. Various other aspects are contemplated.
A computer-implemented method causes data processing hardware to perform operations for training a firewall utilization model. The operations include receiving firewall utilization data for firewall connection requests during a utilization period. The firewall utilization data includes hit counts for each sub-rule associated with at least one firewall rule. The operations also include generating training data based on the firewall utilization data. The training data includes unused sub-rules corresponding to sub-rules having no hits during the utilization period and hit sub-rules corresponding to sub-rules having more than zero hits during the utilization period. The operations also include training a firewall utilization model on the training data. The operations further include, for each sub-rule associated with the at least one firewall rule, determining a corresponding sub-rule utilization probability indicating a likelihood the sub-rule will be used for a future connection request.
An example method of dynamically distributing messaging resources in a software as a service (SaaS) platform includes: receiving, by a processing device, from a first tenant associated with a first tenant set of a plurality of tenant sets, a request to forward a first message to a recipient within a specified destination; identifying, among a plurality of queues associated with the plurality of tenant sets, a subset of queues associated with the first tenant; queuing the first message into a first queue of the subset of queues associated with the first tenant; assigning, to each queue of the plurality of queues, a score reflecting a respective tenant portion of a messaging resource quota associated with the specified destination; retrieving a second message from a queue associated with a highest score; and forwarding the second message to a messaging gateway associated with the specified destination.
Systems and methods for intelligent interference mitigation for time division multiplexing broadband networks. One example embodiments of a wireless base station includes an electronic processor and a transceiver coupled to the electronic processor. The electronic processor is configured to operate to communicate wirelessly via the transceiver with subscriber units utilizing time division duplexing (TDD) and a first frame configuration, and characterize each of a plurality of sub-frames of the first frame configuration as being either conflicting or non-conflicting. The electronic processor is configured to estimate link conditions for the subscriber units and determine, based on the link conditions, whether the subscriber units are resilient or non-resilient. The electronic processor is configured to assign resilient subscriber units to conflicting sub-frames and non-resilient subscriber units to non-conflicting sub-frames.
Apparatuses, methods, and systems are disclosed for selectively deactivating a bandwidth part. One apparatus includes a transceiver that receives one or more UL BWP configurations and receives a SL BWP configuration. Here, the one or more UL BWP configurations includes an active UL BWP and the SL BWP is associated with a first numerology. The apparatus also includes a processor that identifies a second numerology of an active UL BWP and determines whether the first numerology matches the second numerology. If the first numerology does not match the second numerology, the processor selectively deactivates one of the SL BWP and the active UL BWP.
A method, performed by a User Equipment (UE), includes receiving, from a cell, configuration signaling configuring the UE with one or more PUCCH resources on an active UL BWP, the one or more PUCCH resources not being configured with PUCCH-SpatialRelationInfo, and the configuration signaling indicating that a default spatial relation behavior for PUSCH transmission scheduled by a DCI format 0_0 is enabled; receiving, from the cell, the DCI format 0_0 on an active DL BWP, the DCI format 0_0 providing scheduling information for a PUSCH; and transmitting the PUSCH according to the default spatial relation behavior which determines a spatial relation with reference to a QCL-TypeD RS corresponding to a QCL assumption of a pre-determined CORESET on the active DL BWP of the cell.
Methods, systems, and devices for wireless communication are described. Wireless communications systems may support beamformed transmissions between devices (e.g., to improve coverage range). The beamformed transmissions may depend on discovery and maintenance of receive and transmit beams over which a given device may communicate with another device. Various receive and transmit beams for a given device may be compared using reference signals. As the number of devices attempting to access a cell increases, the number of reference signals to be transmitted may scale proportionally. Large numbers of reference signals may flood time-frequency resources of the system and/or require excessive processing at a mobile device. Scrambling sequences for reference signals may be employed to improve efficiency of resource usage. In aspects, the scrambling sequences may be implicitly determined (e.g., based on resources over which the access request was transmitted). Such an implicit association may reduce the need for additional signaling.
A port selection method applied to a first network device and a second network device includes determining that a port status of a first port that is in the first network device and that is used for dual-homing access can switch from a first state to an UP state; receiving a port status of a second port that is in the second network device and that is used for dual-homing access; and selecting, based on the port status of the first port and the port status of the second port, a port to be switched to the UP state from the first port and the second port.
A client device in a wireless network accesses a queue comprising Transmission Control Protocol Acknowledgement (TCP ACK) packets. At least some packets include packet descriptors with a flow identifier indicating a corresponding TCP flow, and a TCP ACK Generation Count. The device inspects a packet descriptor of a first TCP ACK packet, and identifies a first flow identifier and a first TCP ACK Generation Count. The device accesses entries in a data structure that each includes a first field and a second field respectively storing a flow identifier and a TCP ACK Generation Count. The device determines that a condition is satisfied, comprising that an entry in the data structure includes a flow identifier and a TCP ACK Generation Count matching the first flow identifier and the first TCP ACK Generation Count, respectively. In response to the determination, the device marks the first TCP ACK packet to be dropped.
This application provides a traffic classification method and apparatus. The method includes: determining, based on distribution characteristics of concerned bits of a plurality of rules in a first rule set, an effective bit corresponding to the first rule set; determining a hash key value of each rule based on a value of the effective bit of each rule in the first rule set, and storing each rule in the first rule set in at least one of S storage units based on the hash key value, where the first rule set is any one of N rule sets, the N rule sets are stored in the S storage units; and when traffic classification is performed, searching for a corresponding rule in each of the S storage units based on a hash key value of a search key.
An example method includes receiving, from a network device, data indicating characterizations of network traffic on a plurality of ports of the network device; determining, by processing circuitry, for each port of the plurality of ports, an indicator of a port type for the port based on the data indicating the characterizations of network traffic on the plurality of ports, wherein the port type indicates a link type of network traffic exchanged by the port; and outputting, by the processing circuitry, the indicator of the port type to an output device.
Method and system for providing time-critical services via a flow control environment, wherein at least one respective server component is provided for each service, wherein the server component is formed by a flow control component that is loadable into the flow control environment and executed there, where a configuration unit for at least one gateway component of a subnetwork forming the flow control environment ascertains globally valid access information associated with respective addressing information of the server components that is valid within the subnetwork, based on a mode of operation predefined via the configuration unit, one or more gateway components connected in parallel and/or in series are used, and where the at least one gateway component forwards service access requests to the server components in accordance with the forwarding and/or filter rules and the mode of operation.
A network device includes first, second, and third processors. The first processor detects congestion in a packet flow. The packet flow is i) one packet flow among a plurality of packet flows and ii) is formed of a plurality of packets of a same type received from a first device in a network via a first network connection. The packets in the packet flow are destined for a second device in the network. When congestion notification packet generation is enabled for the packet flow, the second processor generates a congestion notification packet by replicating a packet from the packet flow and sends the congestion notification packet to the first device via the first network connection. The congestion notification packet identifies the packet flow for which congestion is detected. The third processor forwards the plurality of packets in the packet flow to the second device via a second network connection.
When the load becomes high, an identification unit (301) of a second packet forwarding device (30) identifies an application of a new flow. Then, a determination unit (302) determines whether or not distribution of new flow is necessary, based on the flow characteristic of the application and the type of the high load. Then, when distribution of the new flow is necessary, a decision unit (303) acquires a list of second packet forwarding devices (30) having a low load from the load monitoring device (10), and decides a second packet forwarding device (30) as the distribution destination. Then, a control unit (304) performs a route control for guiding the flow to the second packet forwarding device (30) which is the distribution destination.
Systems and methods are disclosed herein for filtering Ethernet device source addresses for loop avoidance in a cellular communications system. Embodiments of a method performed by a User Plane Function (UPF) in a core network of a cellular communications system and corresponding embodiments of a UPF are disclosed. In some embodiments, a method performed by a UPF in a core network of a cellular communications system comprises obtaining a Medium Access Control (MAC) address that is reachable over a particular Protocol Data Unit (PDU) session. The method further comprises installing, at the UPF, a filtering rule that prevents Ethernet frames having the MAC address as a source address from being delivered by the UPF via downlink on the particular PDU session. In this manner, loopback of Ethernet frames on the PDU session is avoided.
Systems and methods implemented in a network element in a Segment Routing network include, for a service having two or more candidate paths and responsive to a failure on a current candidate path of the two or more candidate paths, setting an eligibility flag for the current candidate path; and selecting another candidate path of the two or more candidate paths, for the service, based on their eligibility flag.
The present disclosure provides a network packet transmission device and a network packet transmission method thereof. The network packet transmission method includes: receiving a network packet, wherein the network packet has at least one packet attribute; determining at least one destination VID for the network packet according to the at least one packet attribute; determining a transmission speed corresponding to the at least one destination VID based on at least one LAN speed table; and transmitting the network packet to a VLAN corresponding to the at least one destination VID according to the transmission speed.
A method and apparatus for delivering a service to an end point, such as a UE or server, via a communication network, is provided. A virtual network is pre-configured to handle service packets and includes virtual routers for routing packets via logical tunnels. The end point pre-registers with the virtual network and/or service and receives operating parameters for use in service access. The end point location may be tracked following pre-registration. The end point subsequently transmits and/or receives service packets using the operating parameters via an edge node, such as an access node or gateway. The edge node transmits service packets using the operating parameters and, upon detecting operating parameter usage by the end point, forwards received service packets to the virtual network. Operating parameters may include an identifier included in the packet. The end point may use multiple different edge nodes to access the service.
A packet sending method and device. The first node sets a next-hop of the routing information to a next-hop through which the first node reaches the first route source. The destination address of the routing information is the address prefix. When the second route source is superior to the first route source, the first node switches the next-hop of the routing information to a next-hop through which the first node reaches the second route source. Then, the first node adds, to a target packet, path information of a forwarding path from the first node to the second route source according to the switching operation, where a destination address of the target packet matches the address prefix. Finally, the first node forwards the target packet to the second route source through the forwarding path.
Disclosed in the embodiments of the present disclosure are a packet forwarding method, apparatus and system, a network device and a storage medium. The method includes: carrying, according to Deterministic Networking (DetNet) requirements for a multicast packet based on Bit Index Explicit Replication (BIER), corresponding DetNet configuration information in BIER header information of the multicast packet; and sending the multicast packet carrying the BIER header information.
Described are embodiments of a method for performance measurement of a communication device. The method comprises: executing active probing by a communication device coupled to another communication device via a network forming a communication link; reading operational data associated with the communication link in response to executing active probing; and measuring performance, by the communication device, of the communication link with reference to the communication link, the performance measured according to the read operational data.
Example implementations relate to changing a status of a device responsive to detecting an anomaly. A traffic pattern of a device may be monitored across a network. It may be determined that the monitored traffic pattern deviates from an expected traffic pattern of the group of devices by a threshold. Responsive to determining that the devices deviates from the expected traffic pattern, packet data transmitted by the device may be inspected. It may be determined that the inspected packet data transmitted by the device is anomalous. The status of the device may be changed responsive to determining that the packet data transmitted by the device is anomalous.
A method for managing data migration includes: obtaining a confidence level of a predicted failure state of a storage component (SC) of a source device; making a first determination that the confidence level exceeds a minimum threshold; making, based on the first determination, a second determination that a high priority network slice of a network exists; mapping data stored in the SC to the high priority network slice; migrating the data to a target device; after migrating the data to the target device: obtaining a confidence level of a predicted failure state of a processing component (PC); making a third determination that the confidence level of the predicted failure state of the PC exceeds a maximum threshold; mapping, based on the third determination, non-migrated data stored in the source device to the high priority network slice; and migrating the non-migrated data to the target device.
Some embodiments provide a network management system for managing a logical network that spans multiple physical sites. The network management system includes a global network manager for receiving global logical network configuration data for the multiple physical sites. The network management system includes, at each of the physical sites, (i) a local network manager for receiving a logical network configuration for the physical site from the global network manager and (ii) a set of central controllers for distributing logical network configuration data to computing devices that implement the logical network at the physical site.
The present disclosure describes systems, methods, and computer-readable storage media implementing techniques for providing split control of an execution environment. According to aspects of the disclosure, a first entity may be configured to exert control over presentation related aspects (e.g., the look and feel) of services provided by a second entity, while the second entity may exert control over backend processing and execution of the services. To facilitate the different portions of the split control, one or more servers may be configured to provide a first execution layer, a second execution layer, and a second execution layer control panel. The first execution layer may perform operations for executing the provisioning of the service. The second execution layer may perform operations for presenting the computing/execution environment for providing the service, and the second execution environment control panel may provide the first entity to customize/modify presentation related aspects of the computing/execution environment.
A storage gateway serves as an interface between processes on a customer network and a service provider. The storage gateway is located on-premise with the customer processes. To customer processes, it appears that data is stored locally. However, the storage gateway interfaces with a remote storage service to store the data. For cached gateways, the primary data store is a remote data store, while frequently accessed data may be locally cached by the gateway. Reads may be satisfied from the local cache or from virtual data storage; writes are handled so as to appropriately update data blocks in the local cache and/or in virtual data storage. For shadowing gateways, the primary data store is the local data store; reads are passed through to a local data store, and writes are shadowed to virtual data storage as well as being sent to local data store.
Devices, methods, and systems that provide transmitting of messages between different units of a multi-unit system in response to instantiated multi-unit transactions. For example, a method may include: identifying, by a first unit of a multi-unit system of computing devices, an event has occurred that triggers initiation of a transaction; generating, by the first unit, a transaction identifier associated with the transaction, the transaction identifier comprising a unit identifier of the first unit and an application identifier of an application associated with the event; and transmitting, from the first unit and to a second unit of the multi-unit system, the transaction identifier as part of an inter-unit message.
Novel tools and techniques are provided for implementing error detection in a network, and, more particularly, to methods, systems, and apparatuses for implementing error and/or fault detection in a network and/or media stream and providing options to address the error and/or fault in the network and/or media stream. In various embodiments, a computer might detect an error in a first network and send a notification indicating that the error has occurred. The notification might contain one or more options to address the error in the first network. The computer, a user device, a service provider device, or a content provider device might receive and display the notification containing the one or more options. The computer, the user device, the service provider device, or the content provider device might then select at least one of the one or more options to address the error in the first network.
This application proposes multi-beam antenna systems using spherical lens with high isolation between antenna ports and compatible to 2×2, 4×4, 8×8 MIMO transceivers. Several compact multi-band multi-beam solutions (with wideband operation, 40%+, in each band) are achieved by creating dual-band radiators movable on the track around spherical lens and by placing of lower band radiators between spherical lenses. By using of secondary lens for high band radiators, coupling between low band and high band radiators is reduced. Beam tilt range and side lobe suppression are improved by special selection of phase shift and rotational angle of radiators. Resultantly, a wide beam tilt range (0-40 degree) is realized in proposed multi-beam antenna systems. Each beam can be individually tilted. Based on proposed single- and multi-lens antenna solutions, cell coverage improvements and stadium tribune coverage optimization are also achieved, together with interference reduction.
Embodiments provide a data receiver, the data receiver being configured to receive a signal including a sequence of N bits so as to obtain a reception signal, wherein N is a natural number greater than or equal to eight, N≥8, wherein the data receiver is configured to sample the reception signal with a sampling rate that corresponds, with an intentional deviation of up to 2/N, to one sample value per bit of the sequence of N bits so as to obtain a sequence of received bits, wherein the data receiver is configured to correlate the sequence of received bits with K different sequences of N-1 reference bits so as to obtain K partial correlation results, wherein K is smaller than or equal to N-1 and greater than or equal to three, N-1≥K≥3.
Embodiments of apparatus and method for transition smoothing implementation on a stream of data are disclosed. In an example, a system on chip (SoC) for wireless communication includes a digital front-end. The digital front-end is configured to obtain a stream of data having one carrier or multi-carriers. The stream of data is divided into a plurality of blocks. The digital front-end is also configured to adjust a gain of the stream of data based on a predetermined frequency corresponding to a length of each of the plurality of blocks. The digital front-end is also configured to append a ramp-down tail sequence to a first block of the stream of data after a last sample of the first block, and generate a ramp-up head sequence for a second block immediately after the first block, based on a head sequence of the second block.
The present application relates to an adaptive PAM4 decision feedback equalization circuit, including a decision feedback equalization main circuit and an adaptive circuit. The main circuit includes an adder, a first decision device, a second decision device, a third decision device, a first delay unit group, a second delay unit group, a third delay unit group, a decoder, and a DSP coefficient table; the adaptive circuit includes an eye pattern monitoring module and an adaptive module; and the adaptive module includes a comparison unit, a delay unit, and a coefficient regulation and control unit.
Systems, methods, and devices to reduce the channel estimation overhead by collecting data from many UEs and building a location-based mathematical model are disclosed. During building of the model, a reference signal is used to collect location- and signal-related data from connected UEs. Once the model is successfully built, it is then transmitted and/or downloaded to each new UE that connects to the base station. The UEs and/or the base stations then use this model to determine their own transmission parameter values. The UEs also report their location to the base stations, which use the model to estimate channel conditions and adapt transmission parameters for themselves.
A method and apparatus for hybrid automatic repeat request (HARQ) feedback is provided. The method includes: determining at least one target HARQ result corresponding to at least one target PDSCH, wherein the at least one target PDSCH is from all PDSCHs scheduled by a current PDCCH, HARQ results corresponding to the at least one target PDSCH are to be fed back through a current sub-frame; determining a target PUCCH and a combined HARQ result in at least one candidate PUCCH according to the at least one target HARQ result, wherein corresponding target PUCCH resource of the target PUCCH is configured to carry the combined HARQ result, and the combined HARQ result and the target PUCCH resource are configured to identify the at least one target HARQ result; and carrying the combined HARQ result through the target PUCCH resource, and sending the target PUCCH to a base station.
A radio communication terminal that increases the ACK/NACK resource utilization efficiency while preventing ACK/NACK collision, and that causes no unnecessary reduction of the PUSCH band in a system that transmits E-PDCCH control information. The radio communication terminal adopts a configuration including a receiving section that receives a control signal including an ACK/NACK index via an enhanced physical downlink control channel (E-PDCCH) transmitted using one configuration from among one or a plurality of configuration candidates, a control section that selects a resource to be used for an ACK/NACK signal of downlink data from among specified resources specified beforehand based on E-PDCCH configuration information used for transmission or reception of the E-PDCCH and the ACK/NACK index, and a transmitting section that transmits the ACK/NACK signal using the selected specified resource.
A system provides for authorization of data access and processing functions within a distributed server network using a delegated proof-of-stake consensus mechanism. In particular, the system may use assign authorization levels to each node within the network environment. Certain actions or processes performed within the network (e.g., potentially damaging actions) may require that the node proposing the action meets a threshold authorization level before authorizing the action. The system may further increase or decrease authorization levels for each node depending on the outcomes of the proposed actions. In this way, the system may provide a secure way to authorize certain actions or processes taken within a computing environment.
A method for automatically modifying hyper-text markup language (HMTL) code of an e-mail within an email pre-deployment platform comprises receiving previously-created e-mail content comprising a plurality of e-mail content types, each of the e-mail content types written in HMTL code, automatically detecting, by parsing the received HTML code, one or more deficiencies in the e-mail content, identifying the one or more deficiencies in the HTML of the e-mail content types for a user by presenting a natural language explanation of the one or more deficiencies on the user interface, guiding a user of the platform to rectify the one or more deficiencies in the e-mail content by using one or more user interface tools for rectifying the one or more deficiencies; and automatically editing the HTML code based on the user's use of the one or more user interface tools.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may identify, for each of one or more candidate beams in a set of candidate beams, a downlink throughput, an uplink throughput, a downlink power consumption, and an uplink power consumption. The UE may select a beam based at least in part on: at least one of the downlink throughput or the uplink throughput, at least one of the downlink power consumption or the uplink power consumption, and one or more throughput thresholds. The UE may communicate using the selected beam. Numerous other aspects are described.
Examples described herein provide multi-band directional scanning. Examples may include receiving, by a first radio of a first network device operating at a first frequency band below the millimeter-wave (mmWave), a probe request from a second network device indicating a protocol and a particular sector receiving direction of the second network device, and in response to the protocol indicated by the probe request, transmitting, by a second radio of the first network device operating at a second frequency band within the mmWave, a probe response in each of one or more sector transmitting directions, wherein the second network device receives one or more probe responses in the particular sector receiving direction.
Methods and apparatuses for modular MIMO system and CSI feedback in a wireless communication system. The methods and apparatuses include: identifying configuration information of an antenna system including antenna modules for a MIMO operation; identifying, based on the configuration information, a number of collocated antenna groups that each includes one or more of the antenna modules; identifying, based on the configuration information, a number of the antenna modules for each type of the antenna modules in each of the collocated antenna groups, wherein each of the collocated antenna groups includes one or more types of the antenna modules; generating a CSI report for one or more of the collocated antenna groups in the antenna system; and transmitting, to a BS, the CSI report.
A communications method and apparatus implement radio frequency link sharing, improve radio frequency link utilization, and increase an uplink transmission rate. The method is as follows: a terminal receives first configuration information and second configuration information from a first network device. The first configuration information is used to indicate a first reference signal resource of a first antenna port, and the second configuration information is used to indicate a second reference signal resource of a second antenna port; or the first configuration information is used to indicate a third reference signal resource of a first quantity of antenna ports, and the second configuration information is used to indicate a fourth reference signal resource of a second quantity of antenna ports. The terminal sends a first reference signal based on the first configuration information and sends a second reference signal based on the second configuration information.
A receiver is provided for processing an input signal from a communication network. The receiver includes a processor and a memory configured to store computer executable instructions, which, when executed by the processor, cause the processor to (i) receive an input data signal including digital bit information, (ii) code the input data signal into a plurality of multi-level symbols, (iii) map the plurality of multi-level symbols into a plurality of constellation points in the phase domain, (iv) execute a first phase recovery subprocess on the plurality of constellation points to recover a first carrier phase of the input signal, (v) implement a Gaussian mixture model (GMM) on the recovered first carrier phase to generate an enhanced recovered carrier phase, and (vi) process the enhanced recovered carrier phase with a second phase recovery subprocess to reduce distortion from the input signal.
Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor that receives data; circuitry that generate a plurality of electrical signals based on the data; a plurality of filters, each of which receiving a corresponding one of the plurality of electrical signals, a plurality of roll-off factors being associated with a respective one of the plurality of filters; a plurality of DACs that receive outputs from the digital signal processor, the outputs being indicative of outputs from the plurality of filters; a laser that supplies light; and a modulator that receives the light and outputs from the DACs, and supplies a plurality of optical subcarriers based on the outputs, such that one of the optical subcarriers has a frequency bandwidth that is wider than remaining ones of the optical subcarriers, said one of the optical subcarriers carrying information for clock recovery.
An electrical layer subnetwork connection protection includes determining, by a network device including a processor, signal status information based on a power of an obtained optical signal. The signal status information is used to indicate a state of a subnetwork connection carrying the optical signal. The method also includes filtering, by the network device, the signal status information based on a preset first threshold. The first threshold indicates a minimum duration in which the optical signal is in a valid state. The method further includes determining, by the network device based on the filtered signal status information, whether to switch a currently used first clock to a second clock different from the clock. The first clock or the second clock is used to initialize connection monitoring information in response to the determination of whether to switch the currently used first clock to the second clock.
Embodiments provide a method for generating a hopping pattern for transmitting a plurality of sub-data packets in a communication system. The method has a step of deriving a hopping pattern from a binary sequence, wherein an autocorrelation function of the binary sequence has autocorrelation side maximums with a predetermined maximum value. The method further has a step of determining a maximum sub-data packet length for the plurality of sub-data packets in dependence on a total emission duration of the plurality of sub-data packets indicated by the hopping pattern, and a minimum value of a difference sequence of a sorted difference number series derived from the binary sequence.
A method includes producing a plurality of TX LO signals by a first LO generator comprising a first frequency doubler and a first frequency divider, the first frequency doubler configured to receive a VCO signal having a first frequency and generate a first signal fed into the first frequency divider, the first signal having a second frequency that is twice the first frequency, producing a plurality of MRX LO signals by a second LO generator comprising a second frequency doubler and a second frequency divider, the second frequency doubler configured to receive the VCO signal and generate a second signal fed into the second frequency divider, the second signal having the second frequency, configuring the TX to operate at a first LO frequency equal to the second frequency, and configuring the MRX to operate at a second LO frequency equal to the first frequency through disabling the second frequency doubler.
A comparator circuit includes a first comparator configured to compare a voltage based on an input voltage with a first reference voltage, a charge/discharge portion configured to switch between charging and discharging of a capacitor based on an output of the first comparator, a second comparator configured to compare a voltage of the capacitor with a second reference voltage, and a control portion. The control portion is configured to, in a case where the voltage of the capacitor is larger than a predetermined value when the charge/discharge portion performs switching from the charging of the capacitor to the discharging thereof, supply a predetermined voltage instead of the voltage based on the input voltage to the first comparator until the voltage of the capacitor becomes smaller than the predetermined value so that the discharging of the capacitor is maintained by the charge/discharge portion.
A superconducting integrated circuit design method based on placement and routing by different-layer JTLs comprises: cutting a bias line at a cell data interface of a cell library, and reserving a position of a via; placing and arranging cells on a logic cell layer according to a schematic circuit logic diagram; connecting clock lines of each of the cells by using a JTL and a splitter of the logic cell layer; and performing data connection on each of the cells by using JTLs of a transverse JTL routing layer and a longitudinal JTL routing layer which are not in the same layer as the logic cell layer, wherein the JTL of the transverse JTL routing layer is used as a transverse routing cell for data between the cells, the JTL of the longitudinal JTL routing layer is used as a longitudinal routing cell for data between the cells.
A relay circuit may include a solid state relay switch, coupled to an external voltage line and to an charging capacitor; and a solid state relay control circuit, coupled between the charging capacitor and the solid state relay switch. The solid state relay control circuit may be arranged to: turn the solid state relay switch to an OFF state when a capacitor voltage of the charging capacitor falls below a low threshold value; and change the solid state relay switch from the OFF state to an ON state when the capacitor voltage increases above a high threshold value.
To prevent deterioration of current detection accuracy due to a difference in deterioration between a main MOS and a sense MOS. The load drive device includes a main MOS (101) for supplying a load current to a load, a sense MOS (102) to be used for detection of the load current, and an equalizer circuit (110) and a switch (120) which are provided in parallel between the source terminal of the main MOS and the source terminal of the sense MOS. The drain terminal of the main MOS and the drain terminal of the sense MOS have a common connection, and when a current is detected, the terminal voltage of the main MOS and the terminal voltage of the sense MOS are equalized by the equalizer circuit, and the switch is opened. When a current is not detected, the equalizer circuit is stopped and the switch short-circuits the source terminal of the main MOS and the source terminal of the sense MOS.
A multiplexer includes: a switch capable of connecting a common terminal to at least one of a first selection terminal, a second selection terminal, and a third selection terminal at the same time; a first filter connected to the first selection terminal, the first filter having a first pass band; a second filter connected to the second selection terminal, the second filter having a second pass band that is different from the first pass band; and a coupling circuit connected to the third selection terminal and the first filter, the coupling circuit forming a signal path between the third selection terminal and the first filter by electromagnetic coupling.
An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on the diaphragm. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the device to provide lower thermal resistance between the IDT and the substrate.
A method of manufacture for an acoustic resonator device. The method includes forming a nucleation layer characterized by nucleation growth parameters overlying a substrate and forming a strained piezoelectric layer overlying the nucleation layer. The strained piezoelectric layer is characterized by a strain condition and piezoelectric layer parameters. The process of forming the strained piezoelectric layer can include an epitaxial growth process configured by nucleation growth parameters and piezoelectric layer parameters to modulate the strain condition in the strained piezoelectric layer. By modulating the strain condition, the piezoelectric properties of the resulting piezoelectric layer can be adjusted and improved for specific applications.
A power control circuit includes a negative feedback loop, and a radio frequency signal path including a first NMOS transistor having a gate configured as a radio frequency signal input end, a drain connected with a source of a second NMOS transistor, and a source connected with a ground terminal. A drain of the second NMOS transistor is configured as a radio frequency signal output end and connected with a first voltage source. The negative feedback loop includes a third NMOS transistor having a gate connected with an output end of a differential amplifier, a source connected with the ground terminal, and a drain connected with a source of a fourth NMOS transistor having a gate connected with a reverse input end of the differential amplifier and with a second voltage source, and a drain connected with a forward input end and a first bias current source.
A module switchoff device and a security protection system of a photovoltaic power generation system. The module switchoff device comprises: a switch tube having a first end connected to a positive input end of the module switchoff device and a second end connected to a negative input end of the module switchoff device, the positive input end and the negative input end of the module switchoff device being connected to a photovoltaic module; a driving module connected to a control end of the switch tube; and a power supply module connected to the driving module and an output end of the module switchoff device, the output end of the module switchoff device being connected to a controller used for controlling the switch tube to be switched off when there is a need for the photovoltaic module to normally output a voltage and controlling the switch tube to be switched on when there is no need for the photovoltaic module to output a voltage, and the power supply module being used for converting a control signal of the controller.
A power switch circuit includes a switch circuit, a solar photovoltaic panel and a detection circuit and connected with the solar photovoltaic panel and the switch circuit respectively. The solar photovoltaic panel is configured to provide an electrical signal to the detection circuit, the detection circuit is configured to detect whether the power in the electric signal exceeds a preset threshold, and when the power exceeds the preset threshold, the detection circuit outputs a first control signal to the switch circuit to turn on the switch circuit; when the switch circuit is turned on, the solar photovoltaic panel supplies power to the load through the switch circuit, and the switch circuit feeds back a second control signal to the detection circuit so that the detection circuit stops working.
Provided is a drive device for a rotating electric machine, including: a power conversion unit configured to convert DC power supplied from a storage battery into AC power, and to supply the AC power to a rotating electric machine; and a control unit output a switching signal to the power conversion unit. The control unit is configured to set, when the storage battery is to be charged, in a case in which a temperature of the storage battery input from an outside is lower than a set temperature suitable for charging, the switching signal for the power conversion unit so as to be different from the switching signal in a normal drive state of the rotating electric machine.
A motor unit having a motor having a stator and an armature, the armature being arranged for relative driven motion with respect to the stator. A motor control unit has a supply circuit for providing a supply voltage at the motor to provide a set power level to the motor for driving the armature into motion. A measurement circuit is measuring a value of a physical variable indicative of a current flow through the motor, The motor control unit is arranged to interrupt the provision of the supply voltage by the supply circuit and to dynamically brake the motor during a braking time interval and further to measure the value of the physical variable during the braking time interval. The motor control unit is further arranged to compare the measured value of the physical variable with a target value that depends on the supplied power level and on an intended motion amplitude of the armature, to determine a new set power level in dependence on the comparison result and to subsequently provide the new set power level to the motor.
A control system for an electric motor powered by a battery can be configured to receive an input power or torque command corresponding to a commanded power or torque. The control system can be configured to determine if the battery is capable of supplying the commanded power or torque over a time period based on a state of charge of the battery. The control system can be configured such that if the battery is capable of supplying the commanded power or torque over the time period, the control system outputs the input power or torque command, and if the battery is not capable of supplying the commanded power or torque over the time period, the control system outputs an available maximum power or torque command corresponding to an available maximum power or torque over the time period that is less than the commanded power or torque.
An electrical system includes: 1) a buck converter; 2) a battery coupled to an input of the buck converter; and 3) a load coupled to an output of the buck converter. The buck converter includes a high-side switch, a low-side switch, and regulation loop circuitry coupled to the high-side switch and the low-side switch. The regulation loop circuitry includes: 1) a main comparator; 2) a bias current source coupled to the main comparator and configured to provide a bias current to the main comparator; and 3) a dynamic biasing circuit coupled to the main comparator and configured to add a supplemental bias current to the bias current in 100% mode of the buck converter. The supplemental bias current varies depending on an input voltage (VIN) and an output voltage (VOUT) of the buck converter.
A circuit portion comprises a DCDC converter that is configured to charge and discharge an inductor according to a duty cycle to provide current to an output load. A duty module is configured to determine the duty cycle such that the DCDC converter will output a target current. A duty limiter module is configured to cause the inductor to discharge early if the determined duty cycle exceeds a threshold.
A power supply device includes a power supply circuit configured to output different voltages to a plurality of output lines, a plurality of capacitors provided in correspondence with the plurality of output lines, one end of each of the plurality of capacitors being coupled to a corresponding output line of the plurality of output lines and an other end thereof being coupled to a ground potential, a plurality of diodes provided in correspondence with the plurality of output lines, anodes of the plurality of diodes being coupled to the corresponding output lines and cathodes thereof being commonly coupled, and a discharge resistor coupled to the cathodes of the plurality of diodes.
An on-board charger (OBC) may include a power factor corrector PFC comprising a three phase active front end (AFE) connected to an AC electrical grid, and a DC/DC converter receiving a regulated DC voltage from the PFC and configured to charge a high voltage battery. The OBC may be configured to extract a power value which is equal to a reference maximum power extracted from a three phase electrical grid PMAX3∅, from any type of AC electrical grid to which the OBC is connected, and may include three switches SW1, SW2 and SW3 and a diodes arm having diodes D1 and D2 connected in series between a high and low side of the AFE, whereby two switches SW1 and SW2 are arranged between the AFE and the AC electrical grid and are able to interrupt current flowing between phase arms of the three phase AFE, wherein the third switch SW3 is arranged on a line connecting the diodes arm and the AC electrical grid.
A power generation system which is mounted on at least one triangular shaped horizontal base on which is placed a cylindrical platform at the center, which is called a primary rotor, and a set of three cylindrical platforms, which are called secondary rotors, which surround the first rotor. The primary rotor and secondary rotors have a specific set of neodymium magnets and are fixed on vertical axis bearings mounted on the said horizontal base.
A motor assembly for use with a power tool includes a motor housing, a brushless electric motor disposed at least partially in the motor housing, and a PCB assembly coupled to the motor housing. The PCB assembly includes a heat sink, a power PCB coupled to a first side of the heat sink, and a position sensor PCB coupled to a second side of the heat sink opposite the first side and in facing relationship with the motor.
A control module (120,120a-b) for controlling a plurality of power switching elements (111a-d) arranged for controlling provision of power to one or more wireless network devices (125a-c); wherein the control module (120,120a-b) comprises a processor (122) arranged for: determining which one of the plurality of power switching elements (111a-d) the control module (120,120a-b) receives power through; determining a set of the plurality of wireless network devices (125a-c) which receives power via a first power switching element out of the plurality of power switching elements (111a-d); determining that the set includes all the wireless network devices which receive power via the first power switching element; determining operational state of each of the wireless network devices in the set; determining whether the control module (120,120a-b) receives power via the first power switching element; evaluating a first set of conditions; wherein the first set of conditions comprises that the control module (120,120a-b) does not receive power via the first power switching element and the determined operational state indicates that each of the wireless network devices in the set does not require power, controlling, based on a positive result of the evaluation of the first set of conditions, the first power switching element to cease power provision to the set of wireless network devices.
Provided are a wireless charging device and method. The wireless charging device may include: a first group of coils; a second group of coils; and a processor. The processor may be configured to: transmit a first ping signal through the first group of coils and the second group of coils; sense a change in current, voltage, and/or frequency occurring in the first group of coils and the second group of coils in response to the first ping signal to detect that an electronic device is placed on the wireless charging device; select at least one coil from the first group of coils and at least one coil from the second group of coils at which the change is sensed; transmit a second ping signal through the selected coils; and wirelessly transmit power to the electronic device by using the selected coils. Various other embodiments are also disclosed.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an indication of one or more parameters associated with management of multiple antenna groups of the UE for use in energy harvesting. The UE may transmit or receive signaling based at least in part on the one or more parameters of the multiple antenna groups of the UE. Numerous other aspects are described.
Embodiments relate to an operating system coupled to and controlling at least one Distributed Energy Resource (DER) in a smart grid and includes an electricity distribution network and a 2-dimensional Extremum Seeking (2D-ES) controller coupled to network. The electricity distribution network has first and second inputs and one output and maps all active power and reactive power inputs to the smart grid providing measurements of an objective function. The 2D-ES controller controls the DER and includes an active power loop and a reactive power loop. The active power loop is in communication with the first input and the output, governs active power contribution, and receives measurements of the objective function which contain static and oscillatory components. The reactive power loop is in communication with the second input and the output, governs reactive power contribution, and receives measurements of the objective function which contain static and oscillatory components.
A DC-overcurrent detector includes: at least one electric line passing the detector from a source terminal of the detector to a load terminal of the detector; at least one first sensor for monitoring an electric current in the at least one electric line and outputting a current measurement signal; at least one current flow direction sensor for distinguishing a current flow direction of the electric current in the at least one electric line between a first direction from the source terminal to the load terminal and a second direction from the load terminal to the source terminal, and outputting a current flow direction signal; a comparator unit for comparing an actual value of the current measurement signal with a threshold criterion, and outputting a trigger signal at a trigger output if a value of the current measurement signal reaches the threshold criterion; and a threshold criterion unit.
A longitudinal differential protection method for a transformer comprises: calculating a corrected parameter of a transformer according to a voltage and electrical parameters of the transformer, wherein the electrical parameters of the transformer comprise a rated capacity of the transformer, and the corrected parameter of the transformer comprise a capacity of the transformer.
A multiple cable clamp is configured to hold a number of sheathed electrical cables in a cable run within a building structure using electrical power, with such cables in a parallel flat array. The cable clamp is configured as a pair of rail members, one being a back or distal rail member and the other being a corresponding front or proximal rail member. These rail members can favorably be formed as bars of a tough, sturdy non-conductive material such as PVC or similar plastic resin. Transverse grooves and lands in the distal member align with teeth and recesses in the proximal member to contain and secure the respective sheathed cables. The depth of the teeth can vary to accommodate different size cables.
An ion generation device includes a discharge electrode substrate, an induction electrode substrate, and an insulating resin. The discharge electrode substrate on which a discharge electrode is mounted and a first electrode connected to the discharge electrode is formed. The induction electrode substrate on which an induction electrode configured to generate a discharge between the induction electrode and the discharge electrode and a second electrode connected to the induction electrode are formed. The insulating resin is filled at least between the discharge electrode and the induction electrode. The insulating resin provides insulation between the discharge electrode and the induction electrode. The first electrode and the second electrode are disposed and face each other at least partially. The first electrode, the second electrode, and the insulating resin interposed between the first electrode and the second electrode form a capacitor.
A laser system may include one or more of the following components: a power supply, a continuous wave pump laser, a fiber optic cable, a positive lens, a gain medium, a heat sink, and/or a Q-switch. The laser system may be used in a light detection and ranging (LIDAR) system such as a scanning LIDAR system. The laser system may be designed to operate at wavelengths that may be safe for human eyes.
It is difficult to construct an optical fiber transmission system enabling relay optical amplification using a coupled multi-core optical fiber as an optical transmission path; therefore, an optical amplification device includes first optical spatial layout converting means for converting a spatial layout of a plurality of optical signal beams propagating through each of a plurality of cores, from a coupled state in which optical signal beams interfere between a plurality of cores to a non-coupled state in which optical signal beam interference is reduced between a plurality of cores; optical amplifying means for amplifying, in the non-coupled state, the plurality of optical signal beams with the non-coupled state and generating a plurality of amplified optical signal beams; and second optical spatial layout converting means for converting a spatial layout of the plurality of amplified optical signal beams from the non-coupled state to the coupled state.
Systems and methods of electrically connecting electrical energy storage or photovoltaic equipment with electrical destination equipment without performing any hard-wiring or installing any terminations in the field. A utility-scale electrical energy storage system and/or photovoltaic inverter is provided with a receptacle at its electrical output with a frame shaped and sized to secure to a first plug on a first cable to form an electrical connection between the first source equipment, first cable and the destination equipment.
A connecting terminal for connecting an electrical conductor is provided. The connecting terminal includes a housing and a conductor insertion opening formed in the housing, via which the conductor to be connected is insertable into the conductor connection chamber along an insertion direction. The connecting terminal also includes a current bar arranged in the conductor connection space of the housing and a clamping spring arranged in the conductor connection chamber and having a retaining leg and a clamping leg. The clamping leg is transferrable into a clamping position and into an open position. The connecting terminal further includes an actuating element, which is arranged displaceably in the housing along an actuating direction. The clamping leg of the clamping spring is actuatable by means of the actuating element in order to transition from the clamping position into the open position.
A ganged connector assembly includes: a plurality of coaxial connectors, each of the coaxial connectors connected with a respective coaxial cable extending rearwardly therefrom, each of the coaxial connectors including an inner contact and an outer body that is electrically separated from the inner contact; a shell having a plurality of cavities; and a plurality of rear bodies, each of the rear bodies encircling a respective outer body, each of the rear bodies mounted in a respective cavity of the shell. Each of the rear bodies includes a first locking feature. A second locking feature is located in each of the cavities and is fixed relative to the shell. The first and second locking features are configured such that rotation of a first of the plurality of rear bodies relative to the shell moves the first rear body between locked and unlocked positions, wherein in the locked position a respective first connector and respective first cable are secured with the shell within a respective cavity, and in the unlocked position the first connector and first cable can be removed from the shell without removing the remaining connectors and cables.
The disclosure relates to an apparatus for connecting modules included in an electronic device, and the apparatus may comprise: a power source between a first module of an electronic device and a second module of the electronic device; at least one line unit including lines for transferring a control signal, an intermediate (IF) signal, or a radio frequency (RF) signal; a first connector unit for connecting at least one of the lines to the first module; a second connector unit for connecting at least one of the lines to the second module; and a connection unit for connecting at least one external apparatus and at least one line for transferring the IF signal or the RF signal from among the lines.
Embodiments of the present invention provide an antenna arrangement including a magnetic antenna and a tuning element. The magnetic antenna includes a loop interrupted one or several times and a tuning element for tuning the magnetic antenna. The tuning element is configured to provide a tuning signal (e.g., control signal) for tuning the magnetic antenna, and to control the tuning element with the tuning signal to tune the magnetic antenna.
Embodiments of the present disclosure disclose an antenna array applied to an optical phased array, the optical phased array, and a LiDAR. The antenna array includes N phase compensation groups and N antenna groups, where each phase compensation group includes M phase compensation units, and each antenna group includes M antenna units, and where N and M are positive integers. An input end of a phase compensation unit in the phase compensation group is configured to receive an optical signal. An output end is connected to an antenna unit in the antenna group, is configured to transmit the received optical signal to the antenna unit, and performs phase compensation on the optical signal based on a phase shift caused by the antenna unit. The antenna unit is configured to transmit the optical signal.
A radar system with antenna modules that have first and second planar slotted waveguide antenna arrays for radiating and receiving electromagnetic waves. A rotation system supports and rotates the antenna modules around a vertical axis. The modules are arranged back-to-back on opposite sides of a plane intersecting the vertical axis of rotation. Another radar system includes planar slotted waveguide antenna arrays with longitudinal extending waveguide columns. The front side of the columns holding the cavity slots of the first planar antenna array are positioned in a first plane and the front side of the columns holding the cavity slots of the second planar antenna array are positioned in a second plane parallel to the first plane. The arrays may be positioned at a distance to each other in a direction to the first and second planes. The parallel planes may be offset with a minimum perpendicular array distance.
The invention relates to a method for characterizing the effects of coupling of a radiofrequency transceiver apparatus comprising at least one transmit path and at least one receive path, and to an apparatus implementing the method. The method comprises the calculation of coefficients of a correcting filter, with the steps of: transmitting a known signal over a transmit path, receiving a signal over a receive path, calculating the coefficients of the correcting filter on the basis of the known signal and of the signal received over said receive path. The method further comprises a step, carried out during the transmission of a useful signal over the transmit path, of filtering the signal transmitted over the transmit path by means of said correcting filter in order to determine the transmitted signal received by coupling effect over the receive path.
Embodiments of the present application provide a box of a battery. The box includes: an electrical chamber configured to accommodate a plurality of battery cells, a battery cell including a pressure relief mechanism, and the pressure relief mechanism being configured to be actuated when an internal pressure or temperature of the battery cell reaches a threshold, to relieve the internal pressure; a thermal management component configured to accommodate a fluid to adjust the temperature of the battery cell; and a collection chamber configured to collect emissions discharged from the battery cell when the pressure relief mechanism is actuated, where the electrical chamber and the collection chamber are disposed on both sides of the thermal management component, a wall of the collection chamber is provided with a first pressure relief zone, and the first pressure relief zone is configured to relieve the emissions in the collection chamber.
Set forth herein are electrochemical cells which include a negative electrode current collector, a lithium metal negative electrode, an oxide electrolyte membrane, a bonding agent layer, a positive electrode, and a positive electrode current collector. The bonding agent layer advantageously lowers the interfacial impedance of the oxide electrolyte at least at the positive electrode interface and also optionally acts as an adhesive between the solid electrolyte separator and the positive electrode interface. Also set forth herein are methods of making these bonding agent layers including, but not limited to, methods of preparing and depositing precursor solutions which form these bonding agent layers. Set forth herein, additionally, are methods of using these electrochemical cells.
Battery cases are formed such that a small second battery case is disposed on an upper front part of a large first battery case, the second battery case is disposed below a front part of a seat cushion of a rear seat, a recess portion extending in a fore-and-aft direction and having at least part of an exhaust passage member passing therethrough is formed in a lower face of a middle part in a vehicle width direction of the first battery case, battery modules housed in the first battery case are disposed on left and right sides of the recess portion, and a battery module housed in the second battery case is disposed so that a longitudinal direction thereof follows the vehicle width direction. Therefore, it is possible to ensure the headroom for a rear seat by disposing the rear seat at as low a position as possible.
A positive electrode active material and a preparation method thereof, a secondary battery, and an electric apparatus are provided. The positive electrode active material in the present invention includes: a core, where the core is a lithium-containing phosphate; a first coating layer disposed on at least part of surface of the core, where the first coating layer is a carbon coating layer co-doped with titanium and nitrogen; and a second coating layer disposed on at least part of surface of the first coating layer, where the second coating layer includes Li1+xMxTi2−x(PO4)3, where M is at least one element selected from aluminum, lanthanum, indium, zirconium, gallium, and scandium, and 0.2≤x≤0.8. With use of the positive electrode active material of the present invention, a high discharge capacity, excellent rate performance, and excellent cycling performance can be achieved.
A method for fault diagnosis and a computer device are provided. The method is applied to a battery management system of the energy storage system and includes the following. A first thermal-runaway parameter detected by a first detection apparatus and a second thermal-runaway parameter detected by a second detection apparatus are obtained. A difference between the first thermal-runaway parameter and the second thermal-runaway parameter is calculated. Determine that at least one of the first detection apparatus or the second detection apparatus fails, when the difference is greater than a difference threshold. Determine that a battery module fails, when the first thermal-runaway parameter is greater than a first threshold, the second thermal-runaway parameter is greater than a second threshold, and the difference is less than or equal to the difference threshold.
A battery case short-circuit processing method and system are provided. The battery case short-circuit processing method includes: when a short circuit between a case of a battery and a first electrode of the battery is detected, connecting the case and a second electrode of the battery by shorting, wherein if the first electrode is a positive electrode, the second electrode is a negative electrode; and if the first electrode is a negative electrode, the second electrode is a positive electrode; disconnecting the case of the battery from the second electrode, and carrying out standing of the battery for a preset duration; after the standing duration of the battery, detecting a potential difference between the case and the first electrode.
A polymer electrolyte is provided, which includes a polymer including an ethylene oxide unit; and a lithium salt, wherein the terminal of the polymer is substituted with one to four functional groups selected from the group consisting of a nitrogen compound functional group and phosphorus compound functional group, and the terminal of the polymer and the one to four functional groups are linked by one selected from the group consisting of a C2 to C20 alkylene linker, a C2 to C20 ether linker, and a C2 to C20 amine linker. A method for preparing the same is also provided.
A solid-state electrolyte membrane includes an interlocking layered microstructure formed by melting and spraying of ionic conductive material for use in a battery system.
A battery including: a battery can having a cylindrical portion, a bottom wall closing one end of the cylindrical portion, and an open rim continuous with the other end of the cylindrical portion; an electrode body housed in the cylindrical portion; and a sealing body fixed to the open rim so as to seal an opening defined by the open rim. The sealing body includes a sealing plate and a gasket disposed at a peripheral portion of the sealing plate. The gasket has at least one protruding portion configured to restrict insertion of the sealing body into the open rim.
A display device may include a substrate, and a display element layer disposed on the substrate and including a light emitting element that emits light in a display direction. The display element layer may include a first contact electrode electrically connected to the light emitting element, a second contact electrode electrically connected to the light emitting element, and a bank pattern having a shape extending in the display direction. At least one of the first contact electrode, the second contact electrode, and the bank pattern may include a transparent conductive polymer.
A device with a light-emitting diode includes a substrate, a first conductive pad and a second conductive pad, a light-emitting diode, a metal protrusion, a polymer layer, and a top electrode. The substrate has a top surface. The first conductive pad and the second conductive pad are on the substrate. The light-emitting diode is on the first conductive pad. The metal protrusion is on the second conductive pad. The polymer layer covers the top surface of the substrate, the first conductive pad, the second conductive pad, the metal protrusion, and the light-emitting diode, in which a distance from a top of the metal protrusion to the top surface of the substrate is greater than a thickness of the polymer layer. The top electrode covers the light-emitting diode, the polymer layer, and the metal protrusion such that the light-emitting diode is electrically connected with the second conductive pad.
The structure of a semiconductor device with inner spacer structures between source/drain (S/D) regions and gate-all-around structures and a method of fabricating the semiconductor device are disclosed. The semiconductor device includes a substrate, a stack of nanostructured layers with first and second nanostructured regions disposed on the substrate and first and second source/drain (S/D) regions disposed on the substrate. Each of the first and second S/D regions includes an epitaxial region wrapped around each of the first nanostructured regions. The semiconductor device further includes a gate-all-around (GAA) structure disposed between the first and second S/D regions and wrapped around each of the second nanostructured regions, a first inner spacer disposed between an epitaxial sub-region of the first S/D region and a gate sub-region of the GAA structure, a second inner spacer disposed between an epitaxial sub-region of the second S/D region and the gate sub-region of the GAA structure, and a passivation layer disposed on sidewalls of the first and second nanostructured regions.
A semiconductor device includes: a substrate; a source region formed on a main surface of the substrate; a well region electrically connected to the source region; a drift region in contact with the well region; a drain region in contact with the drift region; a first electrode electrically connected to the source region; a second electrode electrically connected to the drain region; a third electrode formed in contact with the source region, the well region, and the drift region through an insulating film; and a parasitic capacitance reduction region formed in contact with the source region and in contact with the third electrode through the insulating film and having a higher resistance value than that of the source region.
The present disclosure relates to semiconductor structures and, more particularly, to heterojunction bipolar transistors and methods of manufacture. The structure includes: a subcollector under a buried insulator layer; a collector above the subcollector; a base within the buried insulator layer; an emitter above the base; and contacts to the subcollector, the base and the emitter.
A method includes providing a silicon carbide substrate, wherein a gate trench extends from a main surface of the silicon carbide substrate into the silicon carbide substrate and wherein a gate dielectric is formed on at least one sidewall of the gate trench, and forming a gate electrode in the gate trench, the gate electrode including a metal structure and a semiconductor layer between the metal structure and the gate dielectric.
A semiconductor device includes a channel, a first source/drain structure on a first side surface of the channel, a second source/drain structure on a second side surface of the channel, a gate structure surrounding the channel, an inner spacer layer on a side surface of the gate structure, and an outer spacer layer on an outer surface of the inner spacer layer. The first source/drain structure includes a first source/drain layer on the channel and a second source/drain layer on the first source/drain layer, and on a plane of the semiconductor device that passes through the channel, at least one of a first boundary line of the first source/drain layer in contact with the second source/drain layer and a second boundary line of the first source/drain layer in contact with the channel may be convex, extending toward the channel.
The present disclosure relates to semiconductor structures and, more particularly, to gate structures and methods of manufacture. The structure includes: a gate structure comprising a horizontal portion and a substantially vertical stem portion; and an air gap surrounding the substantially vertical stem portion and having a curved surface under the horizontal portion.
A semiconductor device according to the present disclosure includes: a first conductivity-type silicon substrate including a cell part and a termination part surrounding the cell part in plan view; a first conductivity-type emitter layer provided on a front surface of the silicon substrate in the cell part; a second conductivity-type collector layer provided on a back surface of the silicon substrate in the cell part; a first conductivity-type drift layer provided between the emitter layer and the collector layer; a trench gate provided to reach the drift layer from a front surface of the emitter layer; and a second conductivity-type well layer provided on the front surface of the silicon substrate in the termination part. Vacancies included in a crystal defect in the cell part are less than vacancies included in a crystal defect in the termination part.
A method of assembling a display area includes selecting a first tile from a plurality of tiles, each tile of the plurality of tiles includes a predetermined parameter and a plurality of microLEDs defining a plurality of pixels. The selecting the first tile based on a value of the predetermined parameter of the first tile. The method includes selecting a second tile from the plurality of tiles based on a value of the predetermined parameter of the second tile. The method further includes positioning the first tile and the second tile into an array defining at least a portion of the display area. A first edge of the first tile facing a second edge of the second tile. A display device including the display area assembled by the method is also provided.
Provided is a camera module and a photosensitive component thereof and a manufacturing method thereof, said photosensitive component comprising: a circuit board, a photosensitive element, and a molding base; the molding base is integrally formed on the circuit board and photosensitive element to form a light window; a first end side corresponding to the molding base adjacent to the flexible region has a first side surface facing the light window; said first side surface comprises a first partial surface arranged adjacent to the photosensitive element and a second partial surface connected to said first portion surface; a first angle between said first partial surface and the optical axis of the camera module is greater than a second angle between the second partial surface and the optical axis; a second end side opposite to and away from the flexible region of the molding base has a second side surface facing the light window; said second side surface comprises a third partial surface arranged adjacent to the photosensitive element and a fourth partial surface connected to said third portion surface; a third angle between the third partial surface and the optical axis is greater than a fourth angle between the fourth partial surface and the optical axis.
Techniques for realizing compound semiconductor (CS) optoelectronic devices on silicon (Si) substrates are disclosed. The integration platform is based on heteroepitaxy of CS materials and device structures on Si by direct heteroepitaxy on planar Si substrates or by selective area heteroepitaxy on dielectric patterned Si substrates. Following deposition of the CS device structures, device fabrication steps can be carried out using Si complimentary metal-oxide semiconductor (CMOS) fabrication techniques to enable large-volume manufacturing. The integration platform can enable manufacturing of optoelectronic module devices including photodetector arrays for image sensors and vertical cavity surface emitting laser arrays. Such module devices can be used in various applications including light detection and ranging (LIDAR) systems for automotive and robotic vehicles as well as mobile devices such as smart phones and tablets, and for other perception applications such as industrial vision, artificial intelligence (AI), augmented reality (AR) and virtual reality (VR).
A multi-chip package includes: an interposer; a first IC chip over the interposer, wherein the first IC chip is configured to be programmed to perform a logic operation, comprising a NVM cell configured to store a resulting value of a look-up table, a sense amplifier having an input data associated with the resulting value from the NVM cell and an output data associated with the first input data of the sense amplifier, and a logic circuit comprising a SRAM cell configured to store data associated with the output data of the sense amplifier, and a multiplexer comprising a first set of input points for a first input data set for the logic operation and a second set of input points for a second input data set having data associated with the data stored in the SRAM cell, wherein the multiplexer is configured to select, in accordance with the first input data set, an input data from the second input data set as an output data for the logic operation; and a second IC chip over the interposer, wherein the first IC chip is configured to pass data associated with the output data for the logic operation to the second IC chip through the interposer.
The present invention provides a nitride semiconductor device, including an insulating substrate, a substrate over the first surface of the insulating substrate, a first lateral transistor over a first region of the substrate, wherein the first lateral transistor includes a first nitride semiconductor layer formed over the substrate, and a first gate electrode, a first source electrode and a first drain electrode formed over the first nitride semiconductor layer, and a second lateral transistor over a second region of the substrate, wherein the second lateral transistor includes a second nitride semiconductor layer formed over the substrate, and a second gate electrode, a second source electrode and a second drain electrode formed over the second nitride semiconductor layer, and a separation trench formed over a third region, wherein the third region is between the first region and the second region.
An array of poly lines on an active device area of an integrated chip is extended to form a dummy device structure on an adjacent isolation region. The resulting dummy device structure is an array of poly lines having the same line width, line spacing, and pitch as the array of poly lines on the active device area. The poly lines of the dummy device structure are on grid with the poly lines on the active device area. Because the dummy device structure is formed of poly lines that are on grid with the poly lines on the active device area, the dummy device structure may be much closer to the active device area than would otherwise be possible. The resulting proximity of the dummy device structure to the active device area improves anti-dishing performance and reduces empty space on the integrated chip.
A display device includes pixels each of which includes a first pixel electrode; a first connection electrode disposed on the first pixel electrode; a second connection electrode spaced apart from the first pixel electrode; a second pixel electrode disposed on the second connection electrode; first light emitting elements disposed between the first pixel electrode and the first connection electrode; and second light emitting elements disposed between the second connection electrode and the second pixel electrode. The first connection electrode is electrically connected to the second connection electrode.
A display apparatus including a plurality of display modules each including a module substrate and a plurality of light emitting devices mounted on the module substrate, and a support substrate on which the display modules are disposed and including conductive members, in which the module substrates includes a plurality of recesses depressed from at least one end surface of the module substrate, and connection electrodes formed in the recesses, and the light emitting devices are electrically connected to the conducive members of the support substrate through the connection electrodes.
An anisotropic conductive film (ACF) is formed with an ordered array of discrete regions that include a conductive carbon-based material. The discrete regions, which may be formed at small pitch, are embedded in at least one adhesive dielectric material. The ACF may be used to mechanically and electrically interconnect conductive elements of initially-separate semiconductor dice in semiconductor device assemblies. Methods of forming the ACF include forming a precursor structure with the conductive carbon-based material and then joining the precursor structure to a separately-formed structure that includes adhesive dielectric material to be included in the ACF. Sacrificial materials of the precursor structure may be removed and additional adhesive dielectric material formed to embed the discrete regions with the conductive carbon-based material in the adhesive dielectric material of the ACF.
A semiconductor package includes a first connection structure having first and second surfaces and including a first redistribution layer, a first semiconductor chip disposed on the first surface and having a first connection pad electrically connected to the first redistribution layer, a second semiconductor chip disposed around the first semiconductor chip on the first surface and having a second connection pad electrically connected to the first redistribution layer, an interconnection bridge disposed on the second surface to be spaced apart from the second surface and connected to the first redistribution layer through a connection member to electrically connect the first and second connection pads to each other, and a second connection structure disposed on the second surface to embed the interconnection bridge and including a second redistribution layer electrically connected to the first redistribution layer.
A semiconductor storage device includes first and second chips. The first chip includes a first semiconductor substrate, first conductive layers arranged in a first direction and extending in a second direction, a semiconductor column extending in the first direction and facing the first conductive layers, a first charge storage film formed between the first conductive layers and the semiconductor column, a plurality of first transistors on the first semiconductor substrate, and first bonding electrodes electrically connected to a portion of the plurality of first transistors. The second chip includes a second semiconductor substrate, a plurality of second transistors on the second semiconductor substrate, and second bonding electrodes electrically connected to a portion of the plurality of second transistors, and bonded to the first bonding electrodes. A thickness of the second semiconductor substrate in the first direction is smaller than a thickness of the first semiconductor substrate in the first direction.
In examples, a semiconductor package comprises a ceramic substrate and first and second metal layers covered by the ceramic substrate. The first metal layer is configured to carry signals at least in a 20 GHz to 28 GHz frequency range. The package comprises a semiconductor die positioned above the first and second metal layers and coupled to the first metal layer. The package comprises a ground shield positioned in a horizontal plane between the semiconductor die and the first metal layer, the ground shield including an orifice above a portion of the first metal layer. The package includes a metal seal ring coupled to a top surface of the ceramic substrate, the metal seal ring having a segment that is vertically aligned with a segment of the ground shield. The segment of the ground shield is between the orifice of the ground shield and a horizontal center of the ground shield. The package comprises a metal lid coupled to a top surface of the metal seal ring.
In one example, a semiconductor device comprises a first substrate comprising a first conductive structure, a first body over the first conductive structure and comprising an inner sidewall defining a cavity in the first body, a first interface dielectric over the first body, and a first internal interconnect in the first body and the first interface dielectric, and coupled with the first conductive structure. The semiconductor device further comprises a second substrate over the first substrate and comprising a second interface dielectric, a second body over the second interface dielectric, and a second conductive structure over the second body and comprising a second internal interconnect in the second body and the second interface dielectric. An electronic component is in the cavity, and the second internal interconnect is coupled with the first internal interconnect. Other examples and related methods are also disclosed herein.
Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate. As further described below, the first and second dies in some embodiments are placed in a face-to-face arrangement (e.g., a vertically stacked arrangement) that has the first and second set of interconnect layers facing each other. In some embodiments, a subset of one or more interconnect layers of the second set interconnect layers of the second die has interconnect wiring that carries power, clock and/or data-bus signals that are supplied to the first IC die.
The present disclosure provides a method for preparing a semiconductor device. The method includes forming a sacrificial source/drain structure over a first carrier substrate; forming a redistribution structure over the sacrificial source/drain structure; attaching the redistribution structure to a second carrier substrate; removing the first carrier substrate after the redistribution structure is attached to the second carrier substrate; replacing the sacrificial source/drain structure with a first source/drain structure; forming a backside contact over and electrically connected to the first source/drain structure; and forming an interconnect part over the backside contact.
An integrated circuit includes a semiconductor substrate and a plurality of dielectric layers over the semiconductor substrate, including a top dielectric layer. A metal plate or metal coil is located over the top dielectric layer; a metal ring is located over the top dielectric layer and substantially surrounds the metal plate or metal coil. A protective overcoat overlies the metal ring and overlies the metal plate or metal coil. A trench opening is formed through the protective overcoat, with the trench opening exposing the top dielectric layer between the metal plate/coil and the metal ring, the trench opening substantially surrounding the metal plate or metal coil.
A semiconductor package structure and a method for manufacturing a semiconductor package structure are provided. The semiconductor package structure includes a first package and a second package. The first package includes a first substrate, an electronic component, a trace layer, and a first conductive structure. The first substrate has a first surface and a second surface opposite to the first surface. The electronic component is embedded in the first substrate. The trace layer has an uppermost conductive layer embedded in the first substrate and exposed from the first surface of the first substrate. The first conductive structure electrically connects the trace layer to the second surface of the first substrate. The second package is disposed on the first surface of the first substrate of the first package.
The present disclosure relates to semiconductor core assemblies and methods of forming the same. The semiconductor core assemblies described herein may be utilized to form semiconductor package assemblies, PCB assemblies, PCB spacer assemblies, chip carrier assemblies, intermediate carrier assemblies (e.g., for graphics cards), and the like. In one embodiment, a silicon substrate core is structured by direct laser patterning. One or more conductive interconnections are formed in the substrate core and one or more redistribution layers are formed on surfaces thereof. The silicon substrate core may thereafter be utilized as a core structure for a semiconductor package, PCB, PCB spacer, chip carrier, intermediate carrier, or the like.
A 3D semiconductor device, the device including: a first level including a plurality of first metal layers; a second level, where the second level overlays the first level, where the second level includes at least one single crystal silicon layer, where the second level includes a plurality of transistors, where each transistor of the plurality of transistors includes a single crystal channel, where the second level includes a plurality of second metal layers, where the plurality of second metal layers include interconnections between the transistors of the plurality of transistors, and where the second level is overlaid by a first isolation layer; and a connective path from the plurality of transistors to the plurality of first metal layers, where the connective path includes a via disposed through at least the single crystal silicon layer, and where at least one of the via includes a contact to at least one of the transistors.
Disclosed is an SOI active interposer for three-dimensional packaging and a fabrication method thereof. An SOI substrate is used as the substrate, and a CMOS inverter is formed on the top silicon of the SOI by using standard integrated circuit manufacturing processes, so that short channel effect and latch-up effect can be suppressed. A via hole structure is etched on the SOI substrate between the PMOS and NMOS transistors of the CMOS inverter, which on the one hand can be used as a conductive channel between the chips in a vertical direction, and on the other hand, can be used as an electrical isolation layer between the PMOS and NMOS transistors.
Stacked die semiconductor packages may include a spacer die disposed between stacked dies in the semiconductor package and the semiconductor package substrate. The spacer die translates thermally induced stresses on the solder connections between the substrate and an underlying member, such as a printed circuit board, from electrical structures communicably or conductively coupling the semiconductor package substrate to the underlying structure to mechanical structures that physically couple the semiconductor package to the underlying structure. The footprint area of the spacer die is greater than the sum of the footprint areas of the individual stacked dies in the semiconductor package and less than or equal to the footprint area of the semiconductor package substrate. The spacer die may have nay physical configuration, thickness, shape, or geometry. The spacer die may have a coefficient of thermal expansion similar to that of the lowermost semiconductor die in the die stack.
A device relates to a semiconductor device. The semiconductor device includes a narrow-line bamboo microstructure integrated within a metal layer of the semiconductor device and a narrow-line polycrystalline microstructure. The narrow-line polycrystalline microstructure is integrated within the same metal layer as the narrow-line bamboo microstructure.
A capping layer is on top of a substrate. A first low-k dielectric layer is on top of the capping layer. One or more trenches are within the first low-k dielectric layer. Each of the one or more trenches have a same depth. Each trench of the one or more trenches include a barrier layer on top of the first low-k dielectric layer, a liner layer and a metal layer on top of the liner layer.
A ring support is attached to an inner wall surface of a chamber that houses a semiconductor wafer to support a susceptor. When the semiconductor wafer is placed on the susceptor, an inner space of the chamber is separated into an upper space and a lower space. Particles are likely to accumulate on a lower chamber window as a floor part of the chamber. However, since the upper space and the lower space are separated, the semiconductor wafer can be prevented from being contaminated by the particles flowing into the upper space and adhering to a surface of the semiconductor wafer even when the particles on the lower chamber window are blown up by irradiation with flash light.
A substrate processing apparatus includes: a chamber; a substrate support disposed in the chamber; a plasma generator configured to form a plasma in the chamber; and a controller configured to perform a process including: placing a substrate on the substrate support, the substrate including a first film, a second film and a third film, the first film containing a silicon, the second film having a second aperture, the first film being disposed between the second film and the third film; cooling the substrate to −30° C. or less; etching the first film through the second aperture with a plasma formed from a first process gas containing a fluorocarbon gas, to form a first aperture of a tapered shape in the first film such that a width of the first aperture gradually decreases toward a bottom of the first aperture; and etching the third film through the first aperture.
Disclosed herein are approaches for reducing buried channel recess depth using a non-doping ion implant prior to formation of the buried channel. In one approach, a method may include providing an oxide layer over a substrate, performing a non-doping implantation process through the oxide layer to form an amorphous region in the substrate, and forming a photoresist over the oxide layer. The method may further include forming a buried layer in the substrate by implanting the substrate through an opening in the photoresist, and performing an oxidation and dopant drive-in process to the amorphous region and to the buried layer to form a second oxide layer.
A directional patterning method includes following steps. A substrate is provided with a mask layer thereon, and the mask layer has at least one opening pattern therein. A cyclic deposition and etching process is performed to increase a length of the at least one opening pattern.
Embodiments of the disclosure provide a lateral bipolar transistor on a semiconductor fin and methods to form the same. A bipolar transistor structure according to the disclosure may include a doped semiconductor layer coupled to a base contact. A first semiconductor fin on the doped semiconductor layer may have a first doping type. An emitter/collector (E/C) material may be on a sidewall of an upper portion of the first semiconductor fin. The E/C material has a second doping type opposite the first doping type. The E/C material is coupled to an E/C contact.
A lamp and epitaxial processing apparatus are described herein. In one example, the lamp includes a bulb, a filament, and a plurality of filament supports disposed in spaced-apart relation to the filament, each of the filament supports having a hook support and a hook. The hook includes a connector configured to fasten the hook to the hook support, a first vertical portion extending from the connector toward the filament, and a rounded portion extending from an end of the first vertical portion distal from the connector and configured to wrap around the filament. A second vertical portion extends from an end of the rounded portion distal from the first vertical portion and the second vertical portion has a length between 60% and 100% of the length of the first vertical portion.
Apparatus and methods use a unique process kit to protect a processing volume of a process chamber. The process kit includes a shield with a frame configured to be insertable into a shield and a foil liner composed of a metallic material that is attachable to the frame at specific points. The specific attachment points are spaced apart to produce an amount of flexibility based on a malleability of the metallic material. The amount of flexibility ranges from approximately 2.5 to approximately 4.5.
Embodiments disclosed herein include a housing for a source array. In an embodiment, the housing comprises a conductive body, where the conductive body comprises a first surface and a second surface opposite from the first surface. In an embodiment a plurality of openings are formed through the conductive body and a channel is disposed into the second surface of the conductive body. In an embodiment, a cover is over the channel, and the cover comprises first holes that pass through a thickness of the cover. In an embodiment, the housing further comprises a second hole through a thickness of the conductive body. In an embodiment, the second hole intersects with the channel.
A control circuit for generating a primary alternating current (AC) voltage signal provided to a dielectric barrier discharge (DBD) disk of a three-dimensional printer includes a switching regulator receiving a direct current (DC) voltage signal. The switching regulator modulates the DC voltage signal based on a variable duty cycle to create a modulated DC signal. The control circuit also includes a modulation circuit in electrical communication with the switching regulator. The modulation circuit introduces a frequency component to the modulated DC signal, where the primary AC voltage signal includes a variable duty cycle and a set frequency, and the frequency component introduced into the modulated DC signal is representative of the set frequency of the primary AC voltage.
A switch is disclosed. In some examples, a switch includes a generally cylindrical housing; one or more sets of contact points enclosed by the housing; an indicator module, such as a multi-color LED illuminator, also enclosed by the housing; and a pushbutton actuator disposed to operate the contact points. The housing includes a display section spanning substantially the entire circumference of the housing such that the indication made by the indicator module is visible from all radial directions. When the pushbutton actuator is pressed, some of the contact points open to cut off power from hazards, while others are reconfigured to change the state of the indicator module to indicate the changed status of the switch. Multiple switches can be interfaced with each other, such as by serial connection, to facilitate multi-switch safety environment. Modular cables can be used to conveniently establish the interface.
An assembly for a wall-mounted or surface-mounted switch comprises a housing, a shell, and circuitry board. The housing comprises a base and a sidewall defining an interior space, a resilient arm projecting from the base into the interior space. The shell has a sidewall and is mounted to the housing to enclose the interior space. The interior of the shell includes a switch contact surface. The circuitry includes a switch such as a tactile or linear switch. The shell is movable from a disengaged position to an actuating position in response to force applied to the exterior of the shell. Applied force causes the switch contact surface to actuate the switch and the shell to deflect the resilient arm. When the applied force is removed, the resilient arm returns the shell to a neutral position.
A vertical capacitor includes a stack of layers conformally covering walls of a first material. The walls extend from a substrate made of a second material different from the first material.
A multilayer capacitor includes: a body including a stack structure in which a first internal electrode and a second internal electrode are stacked on each other interposing a dielectric layer therebetween; and first and second external electrodes disposed on the body to be respectively connected to the first internal electrode and the second internal electrode. One of the first internal electrode and the second internal electrode includes a recess portion disposed in one surface thereof, and providing a deviation in a distance between the first and second internal electrodes, TD indicates a thickness of a portion of the dielectric layer, based on a portion positioned on the one surface and not in the recess portion, TR indicates a recession depth of a portion positioned on the one surface and recessed by the recess portion, and (TR/TD) is greater than zero and less than (½).
A superconductor (10, 30) has a twisted structure and is adapted to form windings in a superconducting coil. The superconductor (10, 30) comprises at least one superconductor wire. The superconductor further comprises at least one elongated electrical insulation element (18, 37). The elongated electrical insulation element(s) (18, 37) is/are twisted with or around the superconductor wire(s) in order to create a separation distance with an adjacent superconductor wire in a neighbouring winding, The elongated electrical insulation element(s) (18, 37) and the superconductor wire(s) may be twisted in one and the same twisting operation.
A winding for a phase winding of a transformer. The winding has coil turns around a coil axis. The winding is adapted to transform voltage in a transformer at a predetermined frequency, when the transformer is operating. The winding is excited by a mechanical load having a main frequency corresponding to the predetermined frequency multiplied by two and has vibration modes. The combination of load and vibration modes results in a vibration of the winding. The winding has a set of vibration modes. Each vibration mode has a vibration mode frequency, wherein a main contributing vibration mode of the set of vibration modes is the vibration mode resulting in the largest acoustic power of the vibration modes. The winding is excited by the load and a stiffness difference between a first winding portion stiffness and a second winding portion stiffness is such that the acoustic power is minimized at said main frequency.
A coil electronic component includes a support substrate having a first surface and a second surface opposing each other, a coil pattern disposed on the first surface of the support substrate, first and second conductive vias penetrating the support substrate and connected to one end and the other end of the coil pattern, respectively, an encapsulant encapsulating the support substrate and the coil pattern, and first and second external electrodes disposed on a lower surface of the encapsulant and electrically connected to the first and second conductive vias, respectively. The support substrate is disposed between the lower surface of the encapsulant and the coil pattern.
Inductor structure is provided, including: n inductors, each inductor including a base plate, a cover plate, a first magnetic column and a coil wound around the first magnetic column, n≥2; m second magnetic column(s), each second magnetic column is disposed between at least two inductors, and has a first terminal connected to the cover plates of the at least two inductors, and a second terminal connected to the base plates of the at least two inductors, m
The invention relates to a semiconductive polymer composition comprising a polymer component, a conducting component and a crosslinking agent, wherein the polymer component comprises a polar polyethylene and the crosslinking agent comprises an aliphatic mono- or bifunctional peroxide or, alternatively, a monofunctional peroxide containing an aromatic group, and the crosslinking agent is present in an amount which is Z wt %, based on the total amount (100 wt %) of the polymer composition, and Z1≤Z≤Z2, wherein Z1 is 0.01 and Z2 is 5.0, an article being e.g. a cable, e.g. a power cable, and processes for producing a semiconductive polymer composition and an article; useful in different end applications, such as wire and cable (W&C) applications.
Disclosed are a ground terminal and an electronic device. The ground terminal includes a core body, a first bonding layer, a second bonding layer, a metal support plate, a third bonding layer, a fourth bonding layer, and a metal work piece. The metal support plate is attached to a lower part of the core body. The metal work piece includes a contact layer, a side layer, an upper welding layer, a wrapping layer, and a lower welding layer. The contact layer is attached to an upper part of the core body, the side layer is located on one side of the core body, the upper welding layer is connected to the metal support plate, the wrapping layer wraps an end portion of the metal support plate, the upper and lower welding layers are connected to a top end of the wrapping layer and the metal support plate, respectively.
A radioactive nuclear waste storage system includes a cask comprising a hermetically sealed internal cavity configured for holding the waste such as spent nuclear fuel submerged in an inventory of water. One or more pressure surge capacitors disposed inside the cask include a vacuum cavity evacuated to sub-atmospheric conditions prior to storage of fuel in the cask. At least one rupture disk seals a vacuum chamber inside each capacitor. Each rupture disk is designed and constructed to burst at a predetermined burst pressure level occurring inside the cask external to the capacitor. This allows excess cask pressure occurring during a high pressure excursion resulting from abnormal operating conditions to bleed into capacitor, thereby returning the pressure inside the cask to acceptable levels. In one embodiment, the capacitors are located in peripheral regions of the cask cavity adjacent to the circumferential wall of the cask body.
The disclosed systems and methods provide a systematic approach to analyzing an individual's lifestyle factors (e.g., foods consumed by the individual) that contribute to the individual's current or potential for disease, and taking further action based on that analysis. One example embodiment is a machine learning system that includes a food composition layer, chemical compounds layer, and disease layer. The food composition layer provides representations of chemical compounds of foods consumed or to be consumed by the individual. The chemical compounds layer is coupled to the food composition layer by links and filters the representations of the chemical compounds based on genetic or metabolic information of the individual, resulting in representations of personalized filtered chemical compounds. The disease layer is coupled to the chemical compounds layer by links and associates a representation of a disease with representations of the personalized filtered chemical compounds based on a disease module for the disease.
A vital sign information sensor for acquiring vital sign information from a physiological tissue of a subject includes: a sensor element configured to acquire the vital sign information from the subject; and a memory storing URI information. The URI information is capable of gaining access to an electronic content provided by a WEB server disposed on a communication network. When the vital sign information sensor is communicably connected to a vital sign information display apparatus, the URI information is transmitted from the memory to the vital sign information display apparatus. The electronic content includes information relevant to the vital sign information sensor.
A Bayesian model for predicting spectacle independence of one or more IOLs based on pre-clinical data (e.g., visual acuity value for one or more defocus values) of an IOL. The Bayesian model is trained to assign appropriate weights for different combinations of defocus values.
An assembly and method for tracking implant devices within a sterile field, the assembly comprising a reader that includes a housing structure with a base and a cover, a scanner having a scanner housing, where the scanner housing is at least partially positioned in a cavity provided in the base; and an aperture provided in the cover, where the cover is configured to receive a transparent sterile sheath to at least partially encase the cover.
Systems and methods are disclosed hosting multiple visual assessments, evaluating user performance on the assessments, and providing recommendations to assess and improve user visual performance. One method includes hosting a plurality of visual assessments; presenting, via a web portal, a user interface for selecting one or more visual assessments of the hosted plurality of visual assessments; receiving, via a web portal, a request for a user to access a visual assessment, wherein the visual assessment is an assessment out of the hosted plurality of assessments; administering the visual assessment to the user; receiving user performance data associated with a user, in response to the administered visual assessment; comparing the user performance data with performance data associated with one or more other users; and generating a report of user visual performance based on the user performance data, wherein the report is accessible to the user via the web portal.
A virtual assistant/chatbot to improve clinical workflow for home renal replacement therapies is disclosed herein. A virtual assistant/chatbot includes a patient-facing user interface configured to enable a patient to engage in a virtual chat session by typing, speaking, or otherwise providing information regarding a patient request or issue related to their renal replacement therapy. The virtual assistant/chatbot also includes a backend server-based system configured to provide logic to respond to a patient's requests. The logic defines a sequence of questions and answers for resolving patient queries. The sequence of assistant/chatbot questions and patient answers may be configured in a node arrangement such that certain patient answers/requests lead to additional questions for additional information from a patient. The virtual assistant/chatbot is configured to answer patient requests automatically or determine if the patient request is to be immediately addressed by a clinician or later through a phone call, text, or email communication.
Systems of screening memory cells of a memory include modulating bitline and/or wordline voltage. In a read operation, the wordline may be overdriven or underdriven with respect to a nominal operating voltage on the wordline. In a write operation, one or both of the bitline and wordline may be overdriven or underdriven with respect to corresponding a nominal operating voltage. Such a system has margin control circuity, which may be in the form of bitline and wordline margin controls, to modulate bitline and wordline voltages, respectively, in the memory cells of the memory array.
A program control circuit for an antifuse-type one time programming memory cell array is provided. When the program action is performed, the program control circuit monitors the program current from the memory cell in real time and increases the program voltage at proper time. When the program control circuit judges that the program current generated by the memory cell is sufficient, the program control circuit confirms that the program action is completed.
A nonvolatile memory device includes at least one memory block and a control circuit. The at least one memory block includes a plurality of cell strings, each including a string selection transistor, a plurality of memory cells and a ground selection transistor. The control circuit controls a program operation by precharging channels of the plurality of cell strings to a first voltage during a bit-line set-up period of a program loop, applying a program voltage to a selected word-line of the plurality of cell strings during a program execution period of the program loop and after recovering voltages of the selected word-line and unselected word-lines of the plurality of cell strings to a negative voltage smaller than a ground voltage, recovering the voltages of the selected word-line and the unselected word-lines to a second voltage greater than the ground voltage during a recovery period of the program loop.
A content addressable memory cell includes a first floating body transistor and a second floating body transistor. The first floating body transistor and the second floating body transistor are electrically connected in series through a common node. The first floating body transistor and the second floating body transistor store complementary data.
A neuromorphic computing device includes first and second memory cell arrays, and an analog-to-digital converting circuit. The first memory cell array includes a plurality of resistive memory cells, generates a plurality of read currents based on a plurality of input signals and a plurality of data, and outputs the plurality of read currents through a plurality of bitlines or source lines. The second memory cell array includes a plurality of reference resistive memory cells and an offset resistor, and outputs a reference current through a reference bitline or a reference source line. The analog-to-digital converting circuit converts the plurality of read currents into a plurality of digital signals based on the reference current. The offset resistor is connected between the reference bitline and the reference source line.
A neuromorphic device including an electrode including a first terminal connected to a bit line through a write drive transistor and a second terminal connected to a source line, a plurality of unit weighting elements having different resistance values, each of the unit weighting elements including a free layer arranged on the top of the electrode, a tunnel barrier layer arranged on the top of the free layer, and a fixed layer arranged on the top of the tunnel barrier layer, and corresponding to each bit of a synapse weight, and a plurality of control electrodes connected to the bit line through a plurality of read drive transistors, respectively, a control voltage being applied between the free layer and the fixed layer of each of the plurality of unit weighting elements through each of the plurality of control electrodes.
A semiconductor device includes a memory cell array including a plurality of memory cells coupled between a multiplicity of word lines and one or more bit lines; and an operation circuit configured to perform a multiplication and accumulation (MAC) operation with one or more first multi-bit data provided from the one or more bit lines and one or more second multi-bit data, wherein a plurality of memory cells coupled to a bit line store a plurality of bits included in a corresponding one of the one or more first multi-bit data, and wherein the memory cell array sequentially provides the plurality of bits included in the corresponding first multi-bit data to the operation circuit.
A read/write method and a memory are provided. The read/write method includes: issuing a read command to a memory, wherein the read command points to an address; reading to-be-read data from a storage unit corresponding to the address to which the read command points; and in response to an error occurring in the to-be-read data, marking the address to which the read command points as disabled. When executing a read/write operation on the memory, the address of the storage unit is marked to distinguish an enabled storage unit from a failed storage unit in real time. A data error or a data loss can be avoided, thereby greatly improving the reliability and the service life of the memory.
The present disclosure is generally related to a magnetic recording device comprising a magnetic recording head having a current flow in a cross-track direction around a main pole. The magnetic recording device comprises a main pole disposed between a trailing shield, a leading shield, and side shields. A trailing gap is disposed between the main pole and the trailing shield. A hot seed layer is disposed between the trailing gap and the trailing shield. A first insulation layer is disposed between the hot seed layer and the trailing shield, where the first insulation layer contacts the side shields. A second insulation layer is disposed between the main pole and leading shield, where the second insulation layer contacts the side shields. The first and second insulation layers direct the current through the side shields and across the main pole in a cross-track direction.
The present disclosure generally relates to a magnetic recording head comprising a spintronic device. The spintronic device is disposed between a main pole and a trailing shield of the magnetic recording head. The spintronic device comprises a multilayer spacer layer comprising a Cu layer in contact with a spin torque layer and a spin transparent texture layer disposed on the Cu layer, the spin transparent texture layer comprising AgSn or AgZn. A multilayer notch comprising a CoFe layer is disposed over the spin transparent texture layer of the multilayer spacer layer and a Heusler alloy layer is disposed on the CoFe layer, the Heusler alloy layer comprising CoMnGe, CoFeGe, or CoFeMnGe. The multilayer spacer layer and the multilayer notch result in the spintronic device having a high spin polarization and a reduced critical current.
Provided are a server for providing a response message, based on a voice input of a user, and an operation method of the server. Provided are a server that recognizes health state information of a user, based on a voice input from the user, analyzes pre-stored health data, generates a response message, based on the analyzed health data, and outputs the generated response message, and an operation method of the server.
Provided are a server that recognizes event information of a user from a voice input from the user, generates a response message, based on information about the type and frequency of a recognized event, and provides the generated response message, and an operation method of the server.
A method, executed by a processor for compressing an audio signal in multiple layers, may comprise: (a) restoring, in a highest layer, an input audio signal as a first signal; (b) restoring, in at least one intermediate layer, a signal obtained by subtracting an upsampled signal, which is obtained by upsampling the audio signal restored in the highest layer or an immediately previous intermediate layer, from the input audio signal as a second signal; and (c) restoring, in a lowest layer, a signal obtained by subtracting an upsampled signal, which is obtained by upsampling the audio signal restored in an intermediate layer immediately before the lowest layer, from the input audio signal as a third signal, wherein the first signal, the second signal, and the third signal are combined to output a final restoration audio signal.
A signal processing method and device includes obtaining spectral coefficients of a current frame of an audio signal, in which N sub-bands of the current frame comprises at least one of the spectral coefficients. A total energy of M successive sub-bands of the N sub-bands, a total energy of K successive sub-bands of the N sub-bands, and an energy of a first sub-band are obtained to determine whether to modify original envelope values of the M sub-bands. When the original envelope values of the M sub-bands are modified, encoding bits are allocated to each of the N sub-bands according to the modified envelope values of the M sub-bands.
A system for identifying computer agents to perform a particular task requested by a user, receives an audio signal to perform the particular task. The system extracts a set of features from the audio signal. The set of features represents at least a first keyword indicating the particular task. The system determines which one or more computer agents from a plurality of computer agents is predetermined to perform the particular task by comparing the first keyword with a plurality of keywords associated with the plurality of keywords. The system determines a first computer agent associated with a second keyword that corresponds to the first keyword. The system executes the first computer agent to perform the particular task.
Various embodiments of the present invention relate to a method for providing an intelligent assistance service, and an electronic device performing same. According to an embodiment, the electronic device includes a display, a communication interface, at least one processor, and at least one memory, wherein the memory is configured to store a task customized by a user and mapped to any one among a selected word, phrase, or sentence. The memory may store instructions which, when executed, cause the processor to: display a user interface, configured to set or change the task, on the display; display at least one utterance related to the task as text on the user interface; identify and display at least one replaceable parameter in the utterance; receive a user input, which may be used as the parameter, for selecting or inputting at least one item; and store the task including the item.
Disclosed are an artificial intelligence (AI) system using a machine learning algorithm such as deep learning, and an application thereof. The present disclosure provides an electronic device comprising: an input unit for receiving content data; a memory for storing information on the content data; an audio output unit for outputting the content data; and a processor, which acquires a plurality of data keywords by analyzing the inputted content data, matches and stores time stamps, of the content data, respectively corresponding to the plurality of acquired keywords, based on a user command being inputted, searches for a data keyword corresponding to the inputted user command among the stored data keywords, and plays the content data based on the time stamp corresponding to the searched data keyword.
The present disclosure relates to a speech synthesis method and device, and a computer-readable storage medium, and relates to the field of computer technology. The method of the present disclosure includes: dividing a text into a plurality of segments according to a language category to which each of the segments belongs; converting each of the segments into a phoneme corresponding to the segment to generate a phoneme sequence of the text according to the language category to which each of the segments belongs; inputting the phoneme sequence into a speech synthesis model trained in advance and converting the phoneme sequence into a vocoder characteristic parameter; and inputting the vocoder characteristic parameter into a vocoder to generate a speech.
A noise control system detects, identifies, and cancels specific, preselected sounds that an operator does not want to hear during operation of a machine. One or more of a microphone or another sensor detects sound vibrations or other operational parameters that result in the generation of sound vibrations during operation of the machine. A controller identifies, and selectively cancels only the specific, preselected sounds the operator does not want to hear while operating the machine by generating an anti-noise signal to interfere with the specific, preselected sounds.
A sound-insulation material for a vehicle has high rigidity and is capable of exhibiting sufficient sound insulation performance against noise having a frequency of 500 Hz to 5000 Hz generated in a vehicle, while maintaining low weight. The sound-insulation material for a vehicle of the present invention has a multilayer structure, the material including: a hard layer having tubular cells, the tubular cells being arranged in a plurality of rows; and a soft layer provided on one surface of the hard layer, in which a ratio of a dynamic spring constant Kd to a static spring constant Ks, of a structure having the hard layer and the soft layer, is 0
The present disclosure discloses a detection method and a detection system. The detection method comprises: creating a plurality of template images based on a reference object, wherein the reference object includes a plurality of units, and the plurality of template images are unit images with different average grayscale values; calculating a first average grayscale value of a unit image to be detected; selecting a first template image from the plurality of template images based on the first average grayscale value, wherein a difference between an average grayscale value of the first template image and the first average grayscale value is smallest; performing color difference detection on the unit image to be detected based on the first template image. The present disclosure can select a template image whose grayscale value is similar to the grayscale value of a unit image to be detected to detect the unit, so that the difference between the unit image to be detected and the template image is smallest, thereby reducing the frequency of false detection and missed detection, and ultimately increasing the detection effect of the color difference detection.
A display module is provided. The display module includes a main display panel, an auxiliary display panel and a backlight module which are laminated sequentially, at least one temperature sensing circuit in the auxiliary display panel, and a control circuit coupled to the at least one temperature sensing circuit. The temperature sensing circuit is configured to generate, based on temperature of the auxiliary display panel, a temperature signal related to the temperature, and the control circuit is configured to adjust a display parameter of the main display panel based on the temperature signal.
A light emitting substrate, a method of driving a light emitting substrate, and a display device are provided. The light emitting substrate includes a plurality of light emitting units arranged in an array. Each light emitting unit includes a driving circuit, a plurality of light emitting elements, and a driving voltage terminal. The plurality of light emitting elements are sequentially connected in series and connected between the driving voltage terminal and the output terminal of the driving circuit. The driving circuit is configured to output a relay signal through the output terminal in a first period according to a first input signal received by the first input terminal and a second input signal received by the second input terminal, and supply a driving signal to the plurality of light emitting elements sequentially connected in series through the output terminal in a second period.
A light-emitting display device includes a display panel including a high-potential power voltage line and a low-potential power voltage line and provided with a plurality of pixels each including a driving transistor and an organic light-emitting diode, a timing controller configured to generate N (N being a natural number) sensing images depending on a size of accumulated image data by accumulating image data for each pixel, and to display the display panel of data of at least one sensing image of the N sensing images on the display panel and to obtain an amount of degradation of organic light-emitting diodes in a sensing mode, and a degradation sensing unit configured to estimate the amount of degradation of the organic light-emitting diodes by sensing an electrical physical quantity for each panel or for each region in a panel in a state in which the at least one sensing image is displayed on the display panel, and to provide the amount of degradation of the organic light-emitting diodes to the timing controller.
A light emitting display device can include a display panel including M subpixels sharing a sensing line, wherein M is an integer equal to or greater than 2; and a circuit configured to sense one or more elements included in at least one of the M subpixels through the sensing line, in which the M sub-pixels are initialized based on an initialization voltage during an initial period, the M sub-pixels are sensed based on a sensing voltage during a data writing period, and an amount of time of the initial period is longer than an amount of time of the data writing period.
A light emitting display device is disclosed that includes an organic light emitting diode having an anode electrode connected to a first power line and a cathode electrode, a capacitor configured to store a data voltage and having a first electrode and a second electrode, and a driving transistor having a first electrode connected to the cathode electrode of the organic light emitting diode, a gate electrode connected to the first electrode of the capacitor, and a second electrode connected to the second electrode of the capacitor and a second power line. The driving transistor applies an initialization voltage to a node connected to the cathode electrode of the organic light emitting diode and the first electrode of the driving transistor.
In a pixel, a display device including a pixel, and a method of driving the display device, the pixel includes a first transistor connected to a first power source, a fourth node and a first node, a second transistor connected to a third node, a data line and an i-th first scan line, a third transistor connected to the first node, the fourth node, and an i-th third scan line, a fourth transistor connected to the second node, an initialization voltage, and an i-th second scan line, a first capacitor connected between the third node and the first node, a second capacitor connected between the first node and the second node, and an organic light emitting diode connected between the second node and a second power source, wherein I is a natural number and the third transistor is an N-type transistor.
Electroluminescent display devices and a method for driving the same are disclosed. An electroluminescent display device according to an embodiment of the present disclosure includes a display panel including a plurality of pixels emitting light according to image data, a first memory storing a stress accumulation value corresponding to the image data, and a compensation gain calculation circuit configured to increase a compensation gain for compensating for the image data on the basis of the stress accumulation value, wherein the stress accumulation value in the first memory is reset whenever the compensation gain increases.
A display device includes: a plurality of gate lines in a display area and extending in a first direction; a scan driver in a non-display area surrounding the display area, connecting the gate lines, extending in a second direction crossing the first direction, and having a first length in the second direction; and an antistatic pattern in the non-display area, extending in the second direction, and having a second length greater than the first length in the second direction.
Provided are a display panel and a display device. The display panel includes a light-emitting element and a pixel drive circuit electrically connected to the light-emitting element. The pixel drive circuit includes a drive transistor and a first reset module. The drive transistor is configured to control a drive current. The first reset module is connected to a first node and configured to provide a first reset voltage to the first node. The light-emitting element is connected to the first node. A working mode of the display panel comprise a first drive mode. A display frame in the first drive mode includes a valid frame and an invalid frame. In the first drive mode, a first reset voltage for the valid frame is different from a first reset voltage for the invalid frame.
An electroluminescent display apparatus includes a display panel including first and second pixel, a data voltage supply unit supplying the first pixel with a first data voltage of a first gate signal and supplying the second pixel with a second data voltage of a second gate signal in a vertical active period of a first frame and continuously supplying the second pixel with a sensing data voltage and a recovery data voltage of a third gate signal in a vertical blank period of the first frame, and a sensing circuit sensing an electrical characteristic of the second pixel based on the sensing data voltage in the vertical blank period. The recovery data voltage is supplied to the second pixel later than the sensing data voltage. The recovery data voltage supplied to the second pixel in the vertical blank period includes the first and second data voltages.
According to an embodiment of the disclosure, an electronic apparatus may include: a display configured to display an image; and a processor configured to: adjust, for each of sub areas having a specified size in an image quality degradation anticipation area of an image, a pixel value of at least one adjustment pixel among a plurality of pixels included in each sub area, and change the adjustment pixel into another pixel among the plurality of pixels, while maintaining a representative value of the plurality of pixels included in each sub area.
This application relates to the field of communications technologies, and provides ambient light and optical proximity detection methods, a photographing method, and a terminal, so that an entire display screen of the terminal is used to display a user interface, and this improves user experience. The method specifically includes: controlling, by a terminal, some areas of a display screen to display a black picture for a plurality of times; and when the areas display the black picture, obtaining approaching data of the external object detected by an optical proximity sensor to control turning on or off of the display screen.
A method can be applied to a terminal provided with a light sensor to determine a screen light intensity value. The method can include: obtaining a screen light intensity detection value detected by the light sensor, and obtaining a current environment temperature when the light sensor detects the screen light intensity detection value; determining a light intensity calibration coefficient corresponding to a value of the current environment temperature based on a corresponding relationship between a temperature and the light intensity calibration coefficient; and determining the screen light intensity value of the terminal based on the determined light intensity calibration coefficient and the screen light intensity detection value.
In general, systems, methods, and devices for modeling air leaks in lungs are provided. In an exemplary embodiment, the systems, methods, and devices provide a model to allow for simulation of negative and positive pressure ventilation modes in vitro, which may allow for evaluation and investigation of pathologies and interventions. In addition to ventilation functions the model includes submersion of the lung sample in fluid inside a chamber and cycling the fluid through a collection system to collect air leaked from the lung. The model can allow for quantification and visual observation of air leaks in real time.
Disclosed is a tablet with an improved Braille display. The Braille display employs a pin array that allows for the selective use of either six or eight pin cells. This is accomplished by turning off or on a pin pair adjacent to each cell. The spacing of the pins also allows capacitive sensors to be located adjacent to each Braille cell. These sensors are used to determine the location of the user's finger upon the display. The pin spacing further allows geometric shapes to be generated in additional to text.
A computer-implemented method performed by a centralized coordinated vehicle guidance system may include: obtaining analytics data for a plurality of vehicles or objects centrally communicating with or detected by the centralized coordinated vehicle guidance system; detecting, based on the analytics data, a predicted collision event involving multiple pairs of the plurality of vehicles or objects; determining trajectory adjustment information for a first vehicle of the plurality of vehicles involved in the collision event; and outputting the trajectory adjustment information to cause the first vehicle to modify its trajectory.
A vehicle such as an autonomous or self-driving vehicle has a navigation system for displaying, on a display screen, a user interface presenting a map showing multiple routes. The vehicle includes a traffic-prioritization processor configured to cooperate with the navigation system to present prices and travel times for the multiple routes via the user interface to enable a user of the vehicle to select one of the multiple routes based on both the prices and the travel times displayed on the display screen. The vehicle further includes a radiofrequency data transceiver configured to cooperate with the traffic-prioritization processor to communicate with one or more other vehicles or a central server to negotiate a traffic reprioritization for a user-selected route.
A method and apparatus according to the invention can include energizing a wireless communication device coupled to a processor of a vehicular entity thus establishing a secure channel or communication area around the vehicular entity;
exchanging information and data with other vehicular entities entering the established channel or communication area;
regulating some vehicle parameters of said vehicular entity for driving the departure and/or travelling of the vehicular entity according to the received information and data.
A method for providing vehicle information, which is carried out using a server, includes steps of: receiving vehicle attribute information including a vehicle type and GPS trajectory information from a vehicle, storing the vehicle attribute information and the GPS trajectory information for each vehicle type based on the vehicle attribute information, generating specialized traffic information associated with a specialized vehicle type needing the specialized traffic information and generating normal traffic information associated with a normal vehicle type, and providing the specialized vehicle type with directions information based on the specialized traffic information, when a current situation is a special situation, and otherwise providing the normal vehicle type with directions information based on the normal traffic information.
A method for locating a network device in a mesh network includes the steps of: generating a message from a network device; storing a step value and an initial step value in the message; initializing the step value with the initial step value; sending the message to the mesh network; receiving the message is received at a further network device; and determining whether the message is classified as received for the first time. If the message is classified by the further network device as being received for the first time, the following additional steps are performed: adding a delta step value to the step value; determining a distance of the further network device from the network device from the step value changed in this way and the initial step value; and indicating the distance for locating the network device for a user at the further network device.
A mechanized store uses a mobile device to authenticate the user. Items removed from one or more displays of the mechanized store by the user are tracked and a list of items removed by the user is updated. The list of items removed is linked with an account of the user.
Systems and methods are disclosed for associating a player loyalty account of a player with a stored value account. The player can accumulate loyalty points over time. The accumulated loyalty points can be converted to value, such as cash or coupons, associated with the stored value account. The value can be accessed by the player through the use of a stored value payment vehicle associated with the stored value account. The value added to the stored value account can be restricted such that the use of the value is limited to particular merchants or particular types of transactions.